The genetics of hypoplastic left heart syndrome

1999 ◽  
Vol 9 (6) ◽  
pp. 627-632 ◽  
Author(s):  
Paul D. Grossfeld

Hypoplastic left heart syndrome is one of the most therapeutically challenging congenital cardiac defects. It accounts for as many as 1.5% of all congenital heart defects, but is responsible for up to one quarter of deaths in neonates with heart disease.1The management of hypoplastic left heart syndrome is controversial. Two surgical options exist:2,3the Norwood procedure, is a three stage repair in which the morphologically right ventricle is converted to function as the systemic ventricle. Alternatively, orthotopic transplantation can be performed. Although both surgical options have had improved outcomes, the prognosis for long-term survival is guarded, with a five year survival for either approach reported to be in the region of 50–60%. In this review, I explore the evidence for a genetic etiology for the “classic” hypoplastic left heart syndrome, defined as mitral and/or aortic atresia with hypoplasia of the left ventricular cavity and the other left-sided structures.

Circulation ◽  
2000 ◽  
Vol 102 (suppl_3) ◽  
Author(s):  
William T. Mahle ◽  
Thomas L. Spray ◽  
Gil Wernovsky ◽  
J. William Gaynor ◽  
Bernard J. Clark

Background —There are limited data regarding the long-term survival of patients who have undergone reconstructive surgery for hypoplastic left heart syndrome (HLHS). We reviewed the 15-year experience at our institution to examine survival in the context of continued improvements in early operative results. Methods and Results —Between 1984 and 1999, 840 patients underwent stage I surgery for HLHS. From review of medical records and direct patient contact, survival status was determined. The 1-, 2-, 5-, 10-, and 15-year survival for the entire cohort was 51%, 43%, 40%, 39%, and 39%, respectively. Late death occurred in 14 of the 291 patients discharged to home after the Fontan procedure, although only 1 patient has died beyond 5 years of age. Heart transplantation after stage I reconstruction was performed in 5 patients. Later era of stage I surgery was associated with significantly improved survival ( P <0.001). Three-year survival for patients undergoing stage I reconstruction from 1995 to 1998 was 66% versus 28% for those patients undergoing surgery from 1984 to 1988. Age >14 days at stage I and weight <2.5 kg at stage I were also associated with higher mortality ( P =0.004 and P =0.01, respectively). Other variables, including anatomic subtype, heterotaxia, and age at subsequent staging procedures, were not associated with survival. Conclusions —Over the 15-year course of this study, early- and intermediate-term survival for patients with HLHS undergoing staged palliation increased significantly. Late death and the need for cardiac transplantation were uncommon.


PEDIATRICS ◽  
1990 ◽  
Vol 85 (6) ◽  
pp. 977-983
Author(s):  
Cynthia D. Morris ◽  
Jacquelyn Outcalt ◽  
Victor D. Menashe

Advances in surgical treatment of hypoplastic left heart syndrome with the Norwood procedure and cardiac transplantation have made essential the understanding of the natural history of hypoplastic left heart syndrome. In a geographically defined population, we ascertained the prevalence of hypoplastic left heart syndrome in children born in Oregon from 1971 through 1986. Clinical and anatomic data were extracted from the charts of the 98 affected children and the survival rate was calculated. Hypoplastic left heart syndrome occurred in 0.162 per 1000 live births in Oregon during this period. No syndrome complex was prevalent and 84% were free of other congenital malformations. However, there was an increased occurrence of congenital heart defects in first-degree relatives of probands with hypoplastic left heart syndrome. Of the affected children 15 ± 4% died on the first day of life, 70 ± 5% died within the first week, and 91 ± 3% died within 30 days. No secular change in survival occurred during the study. Palliation with the Norwood procedure was performed in 20 children. Although survival was significantly improved with this surgery (P = .01), the effect was observed principally through 30 days of life and only one of these children remains alive. Hypoplastic left heart syndrome is a lethal congenital heart defect in children and poses management and ethical dilemmas.


1981 ◽  
Vol 15 ◽  
pp. 644-644
Author(s):  
Willian O'Connor ◽  
James Cash ◽  
Carol Cottrill ◽  
Gregory Johnson ◽  
Jacqueline A Noonan

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Piotr Surmiak ◽  
Małgorzata Baumert ◽  
Małgorzata Fiala ◽  
Zofia Walencka ◽  
Andrzej Więcek

Acute kidney injury (AKI) is a primarily described complication after unbalanced systemic perfusion in neonates with congenital heart defects, including hypoplastic left heart syndrome (HLHS). The aim of the study was to compare the umbilical NGAL concentrations between neonates born with HLHS and healthy infants, as well as to analyze whether the determination of NGAL level could predict AKI in neonates with prenatally diagnosed HLHS. Twenty-one neonates with prenatally diagnosed HLHS were enrolled as study group and 30 healthy neonates served as controls. Perinatal characteristics and postnatal parameters were extracted from the hospital neonatal database. In umbilical cord blood, we determined plasma NGAL concentrations, acid base balance, and lactate and creatinine levels. In neonates with HLHS, complications (respiratory insufficiency, circulatory failure, NEC, IVH, and AKI) were recorded until the day of cardiosurgery. We observed in neonates with HLHS higher umbilical NGAL levels compared to controls. Among 8 neonates with HLHS and diagnosed AKI stage 1, we observed elevated NGAL levels in comparison to those newborns without AKI. Umbilical NGAL could predict, with high sensitivity and specificity, AKI development in study neonates. We suggest that the umbilical blood NGAL concentration may be an early marker to predict AKI in neonates with HLHS.


2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Yan Jiang ◽  
Yali Xu ◽  
Jinliang Tang ◽  
Hongmei Xia

Aims. To detect anatomical and intrinsic histopathological features of the ascending aorta and left ventricular (LV) myocardium and evaluate right ventricular (RV) function in fetuses with hypoplastic left heart syndrome (HLHS).Methods. Twenty-five fetuses diagnosed with HLHS were followed up in the antenatal and postpartum periods. 12 necropsy heart specimens were analyzed for morphological and histological changes.Results. Prenatal echocardiography and pathologic anatomy displayed the typical characteristics of HLHS as a severe underdevelopment of the LV in the form of mitral stenosis or atresia or as aortic atresia or stenosis, with a decreased ratio of aortic diameter to pulmonary artery diameter (median of 0.49 with a range of 0.24 to 0.69,p≤0.001) and a higher ratio of RV diameter to LV diameter (median of 2.44 with a range of 1.33 to 6.25,p≤0.001). The RV volume, stroke volume, and cardiac output in HLHS fetuses were increased compared with the gestational age-matched normal controls (p<0.01). Histological changes in the 12 HLHS specimens included LV myocardial fibrosis, aortic elastic fragmentation, and fibrosis.Conclusions. In addition to severe anatomical deformity, distinct histological abnormalities in the LV myocardium and aortic wall were identified in the fetuses with HLHS. RV function damage may be potentially exists.


Author(s):  
Dai Asada ◽  
Yoko Kawai ◽  
Yoshinobu Maeda ◽  
Masaaki Yamagishi

Abstract A male neonate presented with the aortic/mitral stenotic variant of hypoplastic left heart syndrome, wherein the suprasystemic left ventricular pressure and relatively large left ventricle had shifted the intraventricular septum. Despite bilateral pulmonary artery banding, the stroke volume was difficult to maintain owing to the compressed right ventricle, causing heart failure symptoms. Percutaneous balloon aortic valvuloplasty decreased the left ventricular pressure, restoring the right ventricular function. Norwood procedure with mitral valve closure after catheter intervention reduced the left ventricular size and improved the right ventricular function. This paper refers to the potential of mitral valve closure for hypoplastic left heart syndrome.


Sign in / Sign up

Export Citation Format

Share Document