Blood reservoir function in patients with Fontan circulation and asplenia syndrome

2019 ◽  
Vol 29 (8) ◽  
pp. 1016-1019
Author(s):  
Michitaka Fuse ◽  
Kenji Sugamoto ◽  
Seiko Kuwata ◽  
Rika Sekiya ◽  
Kohei Kawada ◽  
...  

AbstractSplanchnic circulation constitutes a major portion of the vasculature capacitance and plays an important role in maintaining blood perfusion. Because patients with asplenia syndrome lack this vascular bed as a blood reservoir, they may have a unique blood volume and distribution, which may be related to their vulnerability to the haemodynamic changes often observed in clinical practice. During cardiac catheterisation, the mean circulatory filling pressure was calculated with the Valsalva manoeuvre in 19 patients with Fontan circulation, including 5 patients with asplenia syndrome. We also measured the cardiac output index and circulatory blood volume by using a dye dilution technique. The blood volume and the mean circulatory filling pressure and the venous capacitance in patients with asplenia syndrome were similar to those in the remaining patients with Fontan circulation (85 ± 14 versus 77 ± 18 ml/kg, p = 0.43, 31 ± 8 versus 27 ± 5 mmHg, p = 0.19, 2.8 ± 0.6 versus 2.9 ± 0.9 ml/kg/mmHg, p = 0.86). Unexpectedly, our data indicated that patients with asplenia syndrome, who lack splanchnic capacitance circulation, have blood volume and venous capacitance comparable to those in patients with splanchnic circulation. These data suggest that (1) there is a blood reservoir other than the spleen even in patients with asplenia; (2) considering the large blood pool of the spleen, the presence of a symmetrical liver may represent the possible organ functioning as a blood reservoir in asplenia syndrome; and (3) if this is indeed the case, there may be a higher risk of hepatic congestion in patients with Fontan circulation with asplenia syndrome than in those without.

1986 ◽  
Vol 250 (6) ◽  
pp. H1071-H1078
Author(s):  
C. P. Appleton ◽  
R. W. Lee ◽  
G. V. Martin ◽  
M. Olajos ◽  
S. Goldman

The peripheral circulatory effects of alpha 1-adrenoceptor stimulation with methoxamine hydrochloride were compared with those of alpha 2-stimulation with UK 14304-18 in 12 intact dogs. Doses of each agent were infused to increase systemic vascular resistance and arterial pressure 50 and then 100% above control. Heart rate was controlled with atropine. At the higher dose, methoxamine increased mean aortic pressure (PAo) from a control of 77.3 +/- 1.6 to 152.9 +/- 3.2 mmHg, mean circulatory filling pressure (MCFP) from 8.0 +/- 0.4 to 13.3 +/- 1.3 mmHg, and central blood volume (CBV) from 21.3 +/- 1.1 to 25.9 +/- 1.5 ml X kg-1, whereas cardiac output did not change. UK 14304-18 increased PAo from 78.1 +/- 2.6 to 148.9 +/- 2.7 mmHg, MCFP from 7.9 +/- 0.4 to 10.6 +/- 0.4 mmHg, and CBV from 21.0 +/- 1.1 to 24.1 +/- 1.5 ml X kg-1, whereas cardiac output decreased from 151.7 +/- 9.4 to 126.3 +/- 5.8 ml X kg-1 X min-1. Mean circulatory filling pressure and CBV were higher with methoxamine than with UK 14304-18. Effective vascular compliance, determined by serial measurements of MCFP during ganglionic blockade after rapid changes in blood volume, decreased from a control value of 1.9 +/- 0.1 to 1.3 +/- 0.3 ml X mmHg-1 X kg-1 with methoxamine, but did not change with UK 14304-18 (1.9 +/- 0.1 ml X mmHg-1 X kg-1). At any given change in blood volume, there was a higher MCFP with alpha 1-stimulation compared with alpha 2-stimulation. Both agents decreased unstressed vascular volume.(ABSTRACT TRUNCATED AT 250 WORDS)


1993 ◽  
Vol 74 (2) ◽  
pp. 499-509 ◽  
Author(s):  
C. F. Rothe

The volume-pressure relationship of the vasculature of the body as a whole, its vascular capacitance, requires a measurement of the mean circulatory filling pressure (Pmcf). A change in vascular capacitance induced by reflexes, hormones, or drugs has physiological consequences similar to a rapid change in blood volume and thus strongly influences cardiac output. The Pmcf is defined as the mean vascular pressure that exists after a stop in cardiac output and redistribution of blood, so that all pressures are the same throughout the system. The Pmcf is thus related to the fullness of the circulatory system. A change in Pmcf provides a uniquely useful index of a change in overall venous smooth muscle tone if the blood volume is not concomitantly changed. The Pmcf also provides an estimate of the distending pressure in the small veins and venules, which contain most of the blood in the body and comprise most of the vascular compliance. Thus the Pmcf, which is normally independent of the magnitude of the cardiac output, provides an estimate of the upstream pressure that determines the rate of flow returning to the heart.


1990 ◽  
Vol 68 (3) ◽  
pp. 384-391 ◽  
Author(s):  
Carl F. Rothe ◽  
A. Dean Flanagan ◽  
Roberto Maass-Moreno

We tested the hypothesis that the changes in venous tone induced by changes in arterial blood oxygen or carbon dioxide require intact cardiovascular reflexes. Mongrel dogs were anesthetized with sodium pentobarbital and paralyzed with veruronium bromide. Cardiac output and central blood volume were measured by indocyanine green dilution. Mean circulatory filling pressure, an index of venous tone at constant blood volume, was estimated from the central venous pressure during transient electrical fibrillation of the heart. With intact reflexes, hypoxia (arterial Pao2 = 38 mmHg), hypercapnia (Paco2 = 72 mmHg), or hypoxic hypercapnia (Pao2 = 41; Paco2 = 69 mmHg) (1 mmHg = 133.32 Pa) significantly increased the mean circulatory filling pressure and cardiac output. Hypoxia, but not normoxic hypercapnia, increased the mean systemic arterial pressure and maintained the control level of total peripheral resistance. With reflexes blocked with hexamethonium and atropine, systemic arterial pressure supported with a constant infusion of norepinephrine, and the mean circulatory filling pressure restored toward control with 5 mL/kg blood, each experimental gas mixture caused a decrease in total peripheral resistance and arterial pressure, while the mean circulatory filling pressure and cardiac output were unchanged or increased slightly. We conclude that hypoxia, hypercapnia, and hypoxic hypercapnia have little direct influence on vascular capacitance, but with reflexes intact, there is a significant reflex increase in mean circulatory filling pressure.Key words: cardiovascular reflex, vascular capacitance, hypoxia, hypercapnia, mean circulatory filling pressure, venoconstriction.


2006 ◽  
Vol 291 (5) ◽  
pp. R1465-R1473 ◽  
Author(s):  
Erik Sandblom ◽  
Michael Axelsson ◽  
Anthony P. Farrell

Subambient central venous pressure (Pven) and modulation of venous return through cardiac suction (vis a fronte) characterizes the venous circulation in sharks. Venous capacitance was estimated in the dogfish S qualus acanthias by measuring the mean circulatory filling pressure (MCFP) during transient occlusion of cardiac outflow. We tested the hypothesis that venous return and cardiac preload can be altered additionally through adrenergic changes of venous capacitance. The experiments involved the surgical opening of the pericardium to place a perivascular occluder around the conus arteriosus. Another control group was identically instrumented, but lacked the occluder, and was subjected to the same pharmacological protocol to evaluate how pericardioectomy affected cardiovascular status. Routine Pven was negative (−0.08 ± 0.02 kPa) in control fish but positive (0.09 ± 0.01 kPa) in the pericardioectomized group. Injections of 5 μg/kg body mass ( Mb) of epinephrine and phenylephrine (100 μg/kg Mb) increased Pven and MCFP, whereas isoproterenol (1 μg/kg Mb) decreased both variables. Thus, constriction and relaxation of the venous vasculature were mediated through the respective stimulation of α- and β-adrenergic receptors. α-Adrenergic blockade with prazosin (1 mg/kg Mb) attenuated the responses to phenylephrine and decreased resting Pven in pericardioectomized animals. Our results provide convincing evidence for adrenergic control of the venous vasculature in elasmobranchs, although the pericardium is clearly an important component in the modulation of venous function. Thus active changes in venous capacitance have previously been underestimated as an important means of modulating venous return and cardiac performance in this group.


1992 ◽  
Vol 70 (2) ◽  
pp. 233-239 ◽  
Author(s):  
Linong Cheng ◽  
Andrew J. Rankin

To examine the existence of pressure equilibrium between tributary veins and the central vena cava during the mean circulatory filling pressure manoeuvre, pressures in the hepatic portal vein, renal vein, and inferior vena cava were determined at 4-s intervals over a 20-s period of circulatory arrest induced by inflating a right atrial balloon in normal blood volume, 10% volume depletion, and 10% volume expansion states in urethane-anaesthetized rats. Portal vein pressure determined 8 s after arrest during volume depletion and expansion was significantly higher than vena caval pressure (6.2 ± 0.8 vs. 3.4 ± 0.2 and 7.7 ± 0.5 vs. 6.2 ± 0.4 mmHg (1 mmHg = 133.32 Pa), respectively; p < 0.01): this pressure disequilibrium continued for 16 s during volume expansion and for the entire 20 s during volume depletion. Renal vein pressure was equal to vena caval pressure during this manoeuvre. Portal vein pressure at normal blood volume was not significantly different from vena caval pressure following circulatory arrest (4.6 ± 0.3 vs. 3.8 ± 0.4 mmHg, respectively). Following ganglionic blockade, portal vein pressure was still significantly higher than vena caval pressure for 12 s during volume alterations. At the 8th s of the arrest the portal pressure determined in volume depletion was 3.6 ± 0.3 mmHg and the inferior vena caval pressure was 2.6 ± 0.4 mmHg (p < 0.05). Under the volume expansion condition, the respective values were 6.5 ± 0.3 and 5.3 ± 0.4 mmHg (p < 0.05). We conclude that, under conditions of blood volume alterations, there is no pressure equilibrium between the portal vein and the inferior vena cava when mean circulatory filling pressure is measured by this technique; a transhepatic barrier independent of reflex control during the measurement of mean circulatory filling pressure appears to play a role in obstructing the establishment of pressure equilibrium within the venous system.Key words: mean circulatory filling pressure, vascular capacitance, hepatic portal vein pressure, unstressed volume.


1990 ◽  
Vol 68 (5) ◽  
pp. 575-585 ◽  
Author(s):  
Carl F. Rothe ◽  
A. Dean Flanagan ◽  
Roberto Maass-Moreno

The role of β-adrenergic agonists, such as isoproterenol, on vascular capacitance is unclear. Some investigators have suggested that isoproterenol causes a net transfer of blood to the chest from the splanchnic bed. We tested this hypothesis in dogs by measuring liver thickness, cardiac output, cardiopulmonary blood volume, mean circulatory filling pressure, portal venous, central venous, pulmonary arterial, and systemic arterial pressures while infusing norepinephrine (2.6 μg∙min−1∙kg−1), or isoproterenol (2.0 μg∙min−1∙kg−1), or histamine (4 μg∙min−1∙kg−1), or a combination of histamine and isoproterenol. Norepinephrine (an α- and β1-adrenergic agonist) decreased hepatic thickness and increased mean circulatory filling pressure, cardiac output, cardiopulmonary blood volume, total peripheral resistance, and systemic arterial and portal pressures. Isoproterenol increased cardiac output and decreased total peripheral resistance, but it had little effect on liver thickness or mean circulatory filling pressure and did not increase the cardiopulmonary blood volume or central venous pressure. Histamine caused a marked increase in portal pressure and liver thickness and decreased cardiac output, but it had little effect on the estimated mean circulatory filling pressure. Isoproterenol during histamine infusions reduced histamine-induced portal hypertension, reduced liver size, and increased cardiac output. We conclude that the β-adrenergic agonist, isoproterenol, has little influence on vascular capacitance or liver volume of dogs, unless the hepatic outflow resistance is elevated by agents such as histamine.Key words: β-adrenergic agonists, vascular capacitance, mean circulatory filling pressure, isoproterenol, histamine, liver sphincters.


1995 ◽  
Vol 268 (5) ◽  
pp. H1814-H1820 ◽  
Author(s):  
Y. Zhang ◽  
E. Jenkinson ◽  
K. R. Olson

Mean circulatory filling pressure (MCFP), whole body vascular compliance (C), and unstressed blood volume (USV) are important indexes of cardiovascular function in mammals, but they have not been measured in fish. In the present experiments, dorsal aortic (PDA) and sinus venosus (PSV) pressures were measured in unanesthetized trout before and during electrical cardiac fibrillation, while blood volume (BV) was manipulated between 50 and 150% of normal. Measurements were repeated after angiotensin-converting enzyme (ACE) inhibition with lisinopril. Cardiac fibrillation (zero-flow condition) rapidly (approximately 5 s) dropped PDA and increased PSV (equals MCFP). MCFP in normovolemic trout (4.8 +/- 0.3 mmHg) varied directly with BV. C determined from in vivo capacitance curves was similar to that obtained gravimetrically, in vitro (3.4 and 3.5 ml.mmHg-1.kg body wt-1, respectively). USV was 13.3 ml/kg body wt (approximately 45% of BV). ACE inhibition reduced PDA in unfibrillated trout at all BV and reduced PDA in fibrillated fish at BV > or = 80%. ACE inhibition did not affect PSV, MCFP, C, or USV. The systemic arteriovenous pressure gradient at zero flow (delta PF0) was greatest at 100% BV (8.2 +/- 0.5 mmHg) and was reduced by ACE inhibition at 80-120% BV. These results show that key indexes of venous function are readily measured in fish and that the trout venous system is not an effector of angiotensin-mediated regulation of arterial blood pressure. Thus angiotensin acts solely on arterial resistance vessels. Furthermore, the drop in delta PF0 during ACE inhibition is due to a decrease in arteriolar resistance.


1986 ◽  
Vol 251 (4) ◽  
pp. H857-H862 ◽  
Author(s):  
M. L. Gaddis ◽  
C. F. Rothe ◽  
R. S. Tunin ◽  
M. Moran ◽  
C. L. MacAnespie

Three experimental series using 22 acutely splenectomized mongrel dogs were completed to 1) compare fibrillation (Fib) and acetylcholine (ACh) injection as methods to stop the heart for the mean circulatory filling pressure (Pmcf) maneuver, and 2) test whether Pmcf equals portal venous pressure 7 s after heart stoppage (Pportal7s). Blood volume changes of -10, -20, +10, or +20 ml/kg were imposed and Pmcf and Pportal measurements were obtained. Pportal7s and Pmcf were significantly different with volume depletion but were similar under control conditions. Pmcf with ACh and Pmcf with Fib were significantly different only after a volume change of -20 ml/kg. However, severe pulmonary congestion and atelectasis were detected in animals where Ach was used to stop the heart. In some cases (with injection directly into the pulmonary artery) the damage was severe enough to cause irreversible arterial hypoxia. Thus we conclude that the repeated use of ACh may exert a detrimental influence on pulmonary function, changing the physiological status of the experimental animal. Also, the central venous pressure at 7 s of heart stoppage (Pcv7s) is not a fully accurate estimate of the true mean circulatory filling pressure during the Pmcf maneuver, because Pcv7s did not equal the Pportal7s under all experimental conditions.


1977 ◽  
Vol 232 (1) ◽  
pp. H67-H72 ◽  
Author(s):  
J. J. Carneiro ◽  
D. E. Donald

The reflex decrease in blood volume of the spleen, the liver, and the intestine of vagotomized dogs was measured by plethysmographic techniques during bilateral carotid occlusion and moderate and severe hemorrhage. The volume of blood mobilized from each organ during carotid occlusion and moderate hemorrhage was from 6 to 30% of their respective blood volumes and from 55 to 81% during severe hemorrhage. In each experimental situation the spleen exhibited the greatest ability to release blood and the intestine, the least. During moderate hemorrhage (9 ml/kg) the spleen yielded a volume equal to 35% of the blood lost, the liver 14% and the intestine 7%. Comparable figures for severe hemorrhage were 26, 13, and 5%, respectively. This order of ranking the component regions of the splanchnic circulation with regard to function as a blood reservoir may be specific for the dog


1992 ◽  
Vol 70 (5) ◽  
pp. 669-674 ◽  
Author(s):  
S. C. Cha ◽  
G. W. Aberdeen ◽  
B. S. Nuwayhid ◽  
E. W. Quillen Jr.

To assess the degree of circulatory fullness and to evaluate the influence of peripheral and cardiac factors in the regulation of cardiac output during pregnancy, the following studies were conducted using pentobarbital-anesthetized, open-chest nonpregnant and late term pregnant guinea pigs. Mean circulatory filling pressure was taken as the equilibrium pressure when the pulmonary artery was constricted. Total vascular compliance was assessed by ±5-mL changes in blood volume performed while this constriction was maintained. A separate group of guinea pigs was prepared with a pulmonary artery electromagnetic flow probe and right atrial catheter. Rapid infusion of saline was used to increase right atrial pressure while the cardiac output was determined. Pregnancy was characterized by the following changes relative to nonpregnant controls: 51Cr-labelled RBC blood volume increased from 55 ± 3 to 67 ± 3 mL/kg; mean circulatory filling pressure increased from 7.1 ± 0.2 to 8.0 ± 0.5 mmHg (1 mmHg = 133.322 Pa); right atrial pressure decreased from 3.4 ± 0.2 to 2.1 ± 0.3 mmHg; and cardiac output increased from 71.8 ± 3.9 to 96.8 ± 3.3 mL∙min−1∙kg−1. Total vascular compliance was not changed (2.1 ± 0.1 mL∙kg−1∙mmHg−1) and most of the expanded blood volume was accommodated as unstressed volume. The cardiac function curve was shifted upwards in pregnant animals. The resistance to venous return, as determined from the slope of the venous return curves, was not changed. These data suggest that the circulation of the pregnant guinea pig is slightly overfilled. The pressure gradient for venous return was increased, but a more important contribution to the increased levels of cardiac output is made by the increase in cardiac pumping ability.Key words: blood volume, mean circulatory filling pressure, vascular compliance, venous return.


Sign in / Sign up

Export Citation Format

Share Document