scholarly journals Using Insurance to Enhance Nitrogen Fertilizer Application Timing to Reduce Nitrogen Losses

2002 ◽  
Vol 34 (1) ◽  
pp. 131-148 ◽  
Author(s):  
Wen-Yuan Huang

AbstractNitrogen applied before planting is more vulnerable to loss to the environment than nitrogen applied during the growing season, but the growing season application can increase the risk of lower yields caused by adverse weather that prohibits farmers to complete N application. An expected utility framework is used to illustrate the potential economic benefit of insurance for a farmer to reduce this risk cost. An expected-value variance analysis is used to illustrate the potential benefit of insurance to Iowa corn growers who apply N fertilizer only during the growing season.

2016 ◽  
Vol 55 (1) ◽  
pp. 63-73 ◽  
Author(s):  
A. Efretuei ◽  
M. Gooding ◽  
E. White ◽  
J. Spink ◽  
R. Hackett

Abstract The objectives of this work were to determine the effects of initiating application of fertilizer nitrogen (N) to winter wheat at different growth stages (GSs) on grain yield and N use efficiency (NUE). A factorial experiment was carried out in two growing seasons (2011 and 2012) with five timings of first N application (GS 24/26 [tillering], GS 30, GS 31, GS 32 or GS 37) and an unfertilized control, two sowing densities (100 and 400 seeds/m2) and a cattle slurry treatment (with or without slurry). The latter was included to simulate variation in soil N supply (SNS). Delaying the first application of N from the tillering stage until GS 30 had no significant effect on grain yield in either year. Further delaying the initial N application until GS 31 caused a significant yield reduction in 2011, in comparison to GS 30 application, but not in 2012. Differences in efficiency of recovery and use of fertilizer N by the crop among the first three application timings were small. There was no evidence to support alteration in the timing of the first application of N in response to low plant density. Slurry application did not influence SNS, so the interaction between SNS and fertilizer N application timing could not be determined. It is concluded that in order to maximise yield and NUE, the first N application should be applied to winter wheat between late tillering and GS 30 and that delaying the first N until GS 31 can lead to yield reductions compared to the yield obtained with earlier application.


2000 ◽  
Vol 16 (1) ◽  
pp. 31-57 ◽  
Author(s):  
Wen-Yuan Huang ◽  
Richard G. Heifner ◽  
Harold Taylor ◽  
Noel D. Uri

1992 ◽  
Vol 24 (10) ◽  
pp. 1449-1462 ◽  
Author(s):  
W-Y Huang ◽  
L Hansen ◽  
N D Uri

Nitrogen losses associated with the timing of the application of nitrogen fertilizer and the use of irrigation in the production of cotton in the United States are investigated. For nonirrigated production of cotton, nitrogen fertilizer applied during the fall or the spring realizes a significant loss compared with that applied during the growing season. There is no (statistically) significant evidence that more nitrogen fertilizer applied in the fall is unavailable for plant use relative to nitrogen fertilizer applied in the spring for either nonirrigated or irrigated production of cotton. Irrigation practices result in a significant loss of nitrogen fertilizer because of the increased leaching associated with the irrigation process. Irrigation does reduce, however, potential loss of nitrogen fertilizer by increasing its uptake by plants.


HortScience ◽  
2001 ◽  
Vol 36 (7) ◽  
pp. 1202-1205 ◽  
Author(s):  
Paula B. Aguirre ◽  
Yahya K. Al-Hinai ◽  
Teryl R. Roper ◽  
Armand R. Krueger

Nitrogen (N) uptake was compared on 10 dwarf apple rootstocks (M.9 EMLA, M.26 EMLA, M.27 EMLA, M.9 RN29, Pajam 1, Pajam 2, B.9, Mark, B.469, and M.9 T337) grafted with the same scion (`Gala') in a four year-old orchard. Trees were treated in either Spring or Fall 1998 with 40 g of soil applied actual N per tree using ammonium nitrate enriched to 1% 15N. Both percentage of N (%N) and N from fertilizer (NFF) in leaf tissue were highly affected by the rootstock and the season of N application. Generally, higher %N and NFF were observed for spring than fall applications, except for leaves collected during early June 1998. Generally, M.26 EMLA, M.27 EMLA, and M.9 RN29 were the most efficient rootstocks in N uptake for spring applied nitrogen. M.9 EMLA was most efficient late in the season following fall application. Mark was more efficient early in the season for fall applied N than spring application. However, trees on Mark rootstock had the lowest %N throughout the season regardless of the time of N application. Pajam 1 and Pajam 2 were the least efficient rootstocks in N uptake following fall N application. Rootstock also significantly affected %N and NFF of wood tissue. Generally, trees on B.469 had the highest %N in their wood regardless of the season of application. No single rootstock had consistently higher N from fertilizer in their wood tissue after spring application. At the May 1999 sampling date, M.26 EMLA had higher NFF than M.27 EMLA, Pajam 1, Pajam 2, and B.9 with a fall application. Other rootstocks were intermediate. Samples collected in August showed that Pajam 1 was the least efficient rootstock in N uptake for fall applied N compared to other rootstocks, except for Pajam 2 and B.9 that were intermediate. Leaf and wood tissue analysis showed that different rootstocks had different N uptake efficiencies throughout the season. Generally, M.26 EMLA, M.27 EMLA, M.9 RN29 and M.9 EMLA were more efficient at N uptake regardless the season of N application. Pajam 1 and Pajam 2 were the least efficient.


Sign in / Sign up

Export Citation Format

Share Document