The Design of an Infra-Red Interferometer

1972 ◽  
Vol 2 (2) ◽  
pp. 113-114
Author(s):  
K. Harwood

Spectrometers give information on the chemical composition and physical properties of celestial objects. The Earth’s atmosphere restricts the observable spectra to windows in the absorption. Most of these windows are less than one octave wide. To increase the amount of information gained, it is necessary to increase the resolution of the spectrometers. With the advent of balloons, rockets and spacecraft, it is possible to make observations free from atmospheric absorption and it is possible to gain more information by increasing the bandwidth of spectrometers. This paper describes an infra-red Fourier transform spectrometer. The interferometer has a bandwidth of over one decade, from 500 to 5,000 cm-1, with a maximum resolution of 10 cm-1. The resolution can be electronically controlled. There are no absorbing or refracting parts in the interferometer and the resolution is limited by mechanical considerations.

Author(s):  
K. Srinivasa Ramanujam ◽  
C. Balaji

Retrieval of vertical rain structure and hence the estimation of surface rain rate is of central importance to various missions involving remote sensing of the earth’s atmosphere. Typically, remote sensing involves scanning the earth’s atmosphere at visible, infra red and microwave frequencies. While the visible and infra red frequencies can scan the atmosphere with higher spatial resolution, they are not suited for scanning under cloudy conditions as clouds are opaque under these frequencies. However, the longer wavelength microwave radiation can partially penetrate through the clouds without much attenuation thereby making it more suitable for meteorological purposes. The retrieval algorithms used for passive microwave remote sensing involve modeling of the radiation in the earth’s atmosphere where in the clouds and precipitating rain (also known as hydrometeors) emit / absorb / scatter. Additionally, it has been observed that the rain droplets tend to polarize the microwave signal emitted by the earth’s surface. In view of this, the first step in the development of a rainfall retrieval algorithm for any satellite mission is to simulate the radiances (also known as brightness temperatures) that would have been measured by a typical radiometer for different sensor frequencies and resolutions. Towards this, a polarized microwave radiation transfer code has been developed in house for a plane parallel raining atmosphere (henceforth called as forward model) that depicts the physics as seen by a satellite. Physics based retrieval algorithm often involves repeated execution of the forward model for various raining scenario. However, due to the complexity involved in the radiation modeling of the raining atmosphere which is participating in nature, the forward model suffers from the drawback that it requires enormous computational effort. In the present work, a much quicker alternative is proposed wherein the forward model can be replaced with an Artificial Neural Network (ANN) based Fast Forward Model (AFFM). This AFFM can be used in conjunction with an appropriate inverse technique to retrieve the rain structure. Spectral microwave brightness temperatures at frequencies corresponding to the Tropical Rainfall Measuring Mission (TRMM) of National Aeronautics and Space Administration (NASA) and Japan Aerospace Exploration Agency (JAXA) are first simulated using an in-house polarized radiate on transfer code for sixteen past cyclones in the North Indian Ocean region in the period (2000–2005), using the hydrometeor profiles retrieved from the Goddard Profiling Algorithm (GPROF) of the Tropical Rainfall Measuring Mission (TRMM)’s Microwave Imager (TMI). This data is split into two sets: while the first set of data is used for training the network, the remainder of the data is used for testing the ANN. The results obtained are very encouraging and shows that neural network is capable of predicting the brightness temperature accurately with the correlation coefficient of over 99%. Furthermore, the execution of the forward model on an Intel Core 2 Quad 3.0 GHz processor based, 8 GB DDR3 RAM workstation took 3 days, while the AFFM delivers the results in 10 seconds.


Author(s):  
J.C.H. Spence ◽  
J. Isenman

The study of the electronic structure of deep states associated with isolated, well characterised extended defects in semiconductors requires the use of a cathodoluminescence apparatus for TEM in the wavelength range 1-50 microns (1.2 - 0.02 eV). This would also allow the study of the III-V alloys and their defects used for I.R. emitters and lasers. Preliminary results using a grating spectrometer have been obtained by Petroff, however experience from Astronomy indicates that the Fellgett + Jacquinot advantage obtainable using Fourier Transform Infrared Spectroscopy (F.T.I.R.S.) is important for weak sources and noisy detectors. (See Davidson who has compared both techniques in SEM).The crucial design problem in the 1-10 micron range is the mirror movement in the Michelson Interferometer, which must be reproduceably positioned with submicron accuracy over a one centimeter range.


2019 ◽  
Vol 208 ◽  
pp. 15006
Author(s):  
Krzysztof W. Woźniak

One of the main objectives of cosmic-ray studies are precise measurements of the energy and chemical composition of particles with extreme energies. Large and sophisticated detectors are used to find events seen as showers starting in the Earth's atmosphere with recorded energies larger than 100 EeV. However, a Cosmic-Ray Ensemble (CRE) developing before reaching the Earth as a bunch of correlated particles may spread over larger areas and requires an extended set of detectors to be discovered. The Cosmic-Ray Extremely Distributed Observatory (CREDO) is a solution to find such phenomena. Even simple detectors measuring the particle arrival time only are useful in this approach, as they are sufficient both to provide candidate CRE events and to determine the direction from which they are arriving.


Sign in / Sign up

Export Citation Format

Share Document