maximum resolution
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Barbara Ramsak ◽  
Ulrich Kuck ◽  
Eckhard Hofmann

Mating type (MAT) loci are the most important and significant regulators of sexual reproduction and development in ascomycetous fungi. Usually, they encode two transcription factors (TFs), named MAT1-1-1 or MAT1-2-1. Mating-type strains carry only one of the two TF genes, which control expression of pheromone and pheromone receptor genes, involved in the cell-cell recognition process. The present work presents the crystallization for the alpha1 (α1) domain of MAT1-1-1 from the human pathogenic fungus Aspergillus fumigatus (AfMAT1-1-1). Crystals were obtained for the complex between a polypeptide containing the α1 domain and DNA carrying the AfMAT1-1-1 recognition sequence. A streak seeding technique was applied to improve native crystal quality, resulting in diffraction data to 3.2 Å resolution. Further, highly redundant data sets were collected from the crystals of selenomethionine-substituted AfMAT1-1-1 with a maximum resolution of 3.2 Å. This is the first report of structural studies on the α1 domain MAT regulator involved in the mating of ascomycetes.


2021 ◽  
Author(s):  
Zhiwen Zhang ◽  
tao shen ◽  
Chi Liu ◽  
Xin Liu ◽  
Yue Feng ◽  
...  

Abstract In this paper, we propose a high-sensitivity double-sided polishing photonic crystal fiber biosensor based on surface plasmon resonance. The performance of the sensor was analyzed by finite element method, including the influence of different pore sizes and position, polishing depth, pore spacing, metal thickness, refractive index(RI), and manufacturing error (5%) on the sensing performance. We also analyze the performance of the modified sensor in early cancer detection applications. Our use of a double-sided polishing structure and coating with a gold layer not only increases the contact area between the analyte and gold layer but also provides a large enough space for the analysis channel, which is conducive to the actual manufacture and use. The sensor has a detection range of 1.35-1.39, the maximum wavelength sensitivity of 21500 nm/RIU, the average wavelength sensitivity is 9550 nm/RIU, the amplitude sensitivity of -1057.1756 RIU-1, the maximum resolution is 4.68×10-6, R2 of 0.98265, figure of merit is 250, and the maximum resolution of 4.68×10-6, which can be used in the cancer detection and other biological areas.


2021 ◽  
Vol 9 ◽  
Author(s):  
Rahul Kumar Gangwar ◽  
Rui Min ◽  
Santosh Kumar ◽  
Xiaoli Li

In this article, a D-shaped optical fiber refractive index (RI) sensor based on surface plasmon resonance effect is demonstrated. The gold film is placed at the flat portion of the optical fiber along with the sensing analytes of the different RIs to excite the plasmonic interactions. Sensing properties are investigated by using the finite element method. The maximum sensitivity of the proposed sensor is achieved as high as 20863.20 nm/RIU with the maximum resolution of 4.79 × 10−6 RIU and figure of merit of 308.38 RIU−1 for an analyte with RI 1.43 by optimizing the different parameters of the sensor with maximum phase matching between the core mode and surface plasmon mode. The high sensitivity of the sensor offers a promising approach for the detection of unknown RI analyte in chemical and biological fields in the near-infrared region.


2021 ◽  
Author(s):  
Andreas Walz ◽  
Karolina Stoiber ◽  
Annette Huettig ◽  
Hartmut Schlichting ◽  
Johannes V Barth

The prototype of a highly versatile and efficient preparative mass spectrometry system used for the deposition of molecules in ultra-high vacuum (UHV) is presented, along with encouraging performance data obtained on four model species which are thermolabile or not sublimable. The test panel comprises two small organic compounds, a protein, and a large DNA species covering a 4-log mass range up to 1.7 MDa as part of a broad spectrum of analyte species evaluated to date. Three designs of innovative ion guides, a novel digital mass-selective quadrupole (dQMS) and a standard electrospray ionization (ESI) source are combined to an integrated device, abbreviated Electrospray Controlled Ion Beam Deposition (ES-CIBD). Full control is achieved by i) the square-wave-driven radiofrequency (RF) ion guides with steadily tunable frequencies, including a dQMS allowing for investigation, purification and deposition of a virtually unlimited m/z range, ii) the adjustable landing energy of ions down to ~2 eV/z enabling integrity-preserving soft-landing, iii) the deposition in UHV with high ion beam intensity (up to 3 nA) limiting contaminations and deposition time, and iv) direct coverage control via the deposited charge. The maximum resolution of R=650 and overall efficiency up to T_total=4.4% calculated from solution to UHV deposition are remarkable as well, while the latter is mainly limited by the not yet optimized ionization performance. In the setup presented, a scanning tunneling microscope (STM) is attached for in situ UHV investigation of the deponents demonstrating a selective, structure-preserving process and atomically clean layers.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6107
Author(s):  
Bogdan Bednarski ◽  
Krzysztof Jackiewicz ◽  
Andrzej Gałecki

Stepper motors are widely used in many applications where discrete, precise movement is required. There is a variety of dedicated stepper motor controllers (sometimes referred to as “step sticks”) available on the market. Those controllers provide a number of different motor control schemes that vary by aspects like current control method, reference current shape or maximum resolution increase (microstepping). The two most widely acknowledged signal shapes are sine-cosine microstepping and quadrature microstepping. The choice of the control scheme impacts torque output, torque variation, positioning error and maximum power supply requirements. This paper presents a family of generalised microstepping signal shapes, ranging from sine-cosine microstepping to quadrature microstepping. Derivation of signal shapes as well as their mathematical analyses are provided. Those signals are then implemented on the control board. A series of experiments is performed on a test bench to analyse the influence of different signal shapes on the performance of the motor in both load and no load conditions. The comparison of the new generalized shapes influence on the motor operation to the commonly used sine-cosine and quadrature control is provided.


2021 ◽  
Author(s):  
Andreas Walz ◽  
Karolina Stoiber ◽  
Annette Huettig ◽  
Hartmut Schlichting ◽  
Johannes V Barth

The prototype of a highly versatile and efficient preparative mass spectrometry system used for the deposition of molecules in ultra-high vacuum (UHV) is presented along with encouraging performance data obtained on model species which are thermolabile or not sublimable. The test panel comprises two organic compounds, a protein, and DNA covering a 4-log mass range up to 1.7 MDa as part of a broad spectrum of analyte species. Three designs of innovative ion guides, a novel digital mass-selective quadrupole (dQMS) and a standard electrospray ionization (ESI) source are combined to an integrated device, abbreviated Electrospray Controlled Ion Beam Deposition (ES-CIBD). Full control is achieved by i) the square-wave-driven radiofrequency (RF) ion guides with steadily tunable frequencies, including a dQMS allowing for investigation, purification and deposition of a virtually unlimited m/z range, ii) the adjustable landing energy of ions down to ~2 eV/z enabling integrity-preserving soft-landing, iii) the deposition in UHV with high ion beam intensity (up to 3 nA) limiting contaminations and deposition time, and iv) direct coverage control via the deposited charge. The maximum resolution of R=650 and overall efficiency up to T-total=4.4% calculated from solution to UHV deposition are remarkable as well, while the latter is mainly limited by the not yet optimized ionization performance. In the setup presented, a scanning tunneling microscope (STM) is attached for in situ UHV investigation of the deponents demonstrating a selective, structure-preserving process and atomically clean layers.


Sensors ◽  
2021 ◽  
Vol 21 (17) ◽  
pp. 5941
Author(s):  
Anna Vilà ◽  
Sergio Moreno ◽  
Joan Canals ◽  
Angel Diéguez

Lensless microscopy requires the simplest possible configuration, as it uses only a light source, the sample and an image sensor. The smallest practical microscope is demonstrated here. In contrast to standard lensless microscopy, the object is located near the lighting source. Raster optical microscopy is applied by using a single-pixel detector and a microdisplay. Maximum resolution relies on reduced LED size and the position of the sample respect the microdisplay. Contrarily to other sort of digital lensless holographic microscopes, light backpropagation is not required to reconstruct the images of the sample. In a mm-high microscope, resolutions down to 800 nm have been demonstrated even when measuring with detectors as large as 138 μm × 138 μm, with field of view given by the display size. Dedicated technology would shorten measuring time.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0254380
Author(s):  
Bertrand Charry ◽  
Emily Tissier ◽  
John Iacozza ◽  
Marianne Marcoux ◽  
Cortney A. Watt

Emergence of new technologies in remote sensing give scientists a new way to detect and monitor wildlife populations. In this study we assess the ability to detect and classify two emblematic Arctic cetaceans, the narwhal (Monodon monoceros) and beluga whale (Delphinapterus leucas), using very high-resolution (VHR) satellite imagery. We analyzed 12 VHR images acquired in August 2017 and 2019, collected by the WorldView-3 satellite, which has a maximum resolution of 0.31 m per pixel. The images covered Clearwater Fiord (138.8 km2), an area on eastern Baffin Island, Canada where belugas spend a large part of the summer, and Tremblay Sound (127.0 km2), a narrow water body located on the north shore of Baffin Island that is used by narwhals during the open water season. A total of 292 beluga whales and 109 narwhals were detected in the images. This study contributes to our understanding of Arctic cetacean distribution and highlights the capabilities of using satellite imagery to detect marine mammals.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4077
Author(s):  
Bo-Yeon Yi ◽  
Young-Ho Yoon ◽  
Young-Jun Kim ◽  
Gil-Young Kim ◽  
Yong-Hwan Joo ◽  
...  

Natural gas hydrates (GHs) filling sand layer pores are the most promising GHs that can be produced via conventional mechanisms in deep-sea environments. However, the seismic tracking of such thin GH-bearing sand layers is subject to certain limitations. For example, because most GH-bearing sand layers are thin and sparsely interbedded with mud layers, conventional seismic data with a maximum resolution of ~10 m are of limited use for describing their spatial distribution. The 2010 Ulleung Basin drilling expedition identified a relatively good GH reservoir at the UBGH2-6 site. However, the individual GH-bearing sand layers at this site are thin and cannot therefore be reliably tracked using conventional seismic techniques. This study presents a new thin layer tracking method using stepwise seismic inversion and 3D seismic datasets with two different resolutions. The high-resolution acoustic impedance volume obtained is then used to trace thin layers that cannot be harnessed with conventional methods. Moreover, we estimate the high-resolution regional GH distribution based on GH saturation derived from acoustic impedance at UBGH2-6. The thin GH layers, previously viewed as a single layer because of limited resolution, are further subdivided, traced, and characterized in terms of lateral variation.


2021 ◽  
Vol 11 (8) ◽  
pp. 3392
Author(s):  
Xinjun Wan ◽  
Xuechen Tao

Application of cell-phone-based microscopes has been hindered by limitations such as inferior image quality, fixed magnification and inconvenient operation. In this paper, we propose a reverse cell phone lens-based miniature microscope with a configurable magnification ratio. By switching the objectives of three camera lens and applying the digital zooming function of the cell phone, a cell phone microscope is built with the continuously configurable magnification ratio between 0.8×–11.5×. At the same time, the miniature microscope can capture high-quality microscopic images with a maximum resolution of up to 575 lp/mm and a maximum field of view (FOV) of up to 7213 × 5443 um. Furthermore, by moving the tube lens module of the microscope out of the cell phone body, the built miniature microscope is as compact as a <20 mm side length cube, improving operational experience profoundly. The proposed scheme marks a big step forward in terms of the imaging performance and user operational convenience for cell phone microscopes.


Sign in / Sign up

Export Citation Format

Share Document