A Method of Calculating Radiative Heat Diffusion in Particle Simulations

1985 ◽  
Vol 6 (2) ◽  
pp. 207-210 ◽  
Author(s):  
L. Brookshaw

AbstractA new method for solving heat diffusion in three dimensional particle simulations is described. The difficulties encounted by other authors is discussed, in particular the difficulty of including boundary conditions in particle simulations. One and three dimensional tests of the method are described.

2007 ◽  
Vol 129 (11) ◽  
pp. 1506-1516 ◽  
Author(s):  
Arturo Pacheco-Vega ◽  
J. Rafael Pacheco ◽  
Tamara Rodić

We describe the implementation of an interpolation technique, which allows the accurate imposition of the Dirichlet, Neumann, and mixed (Robin) boundary conditions on complex geometries using the immersed-boundary technique on Cartesian grids, where the interface effects are transmitted through forcing functions. The scheme is general in that it does not involve any special treatment to handle either one of the three types of boundary conditions. The accuracy of the interpolation algorithm on the boundary is assessed using several two- and three-dimensional heat transfer problems: (1) forced convection over cylinders placed in an unbounded flow, (2) natural convection on a cylinder placed inside a cavity, (3) heat diffusion inside an annulus, and (4) forced convection around a stationary sphere. The results show that the scheme preserves the second-order accuracy of the equations solver and are in agreement with analytical and/or numerical data.


2021 ◽  
Vol 2021 (5) ◽  
Author(s):  
Adrien Fiorucci ◽  
Romain Ruzziconi

Abstract The gravitational charge algebra of generic asymptotically locally (A)dS spacetimes is derived in n dimensions. The analysis is performed in the Starobinsky/Fefferman-Graham gauge, without assuming any further boundary condition than the minimal falloffs for conformal compactification. In particular, the boundary structure is allowed to fluctuate and plays the role of source yielding some symplectic flux at the boundary. Using the holographic renormalization procedure, the divergences are removed from the symplectic structure, which leads to finite expressions. The charges associated with boundary diffeomorphisms are generically non-vanishing, non-integrable and not conserved, while those associated with boundary Weyl rescalings are non-vanishing only in odd dimensions due to the presence of Weyl anomalies in the dual theory. The charge algebra exhibits a field-dependent 2-cocycle in odd dimensions. When the general framework is restricted to three-dimensional asymptotically AdS spacetimes with Dirichlet boundary conditions, the 2-cocycle reduces to the Brown-Henneaux central extension. The analysis is also specified to leaky boundary conditions in asymptotically locally (A)dS spacetimes that lead to the Λ-BMS asymptotic symmetry group. In the flat limit, the latter contracts into the BMS group in n dimensions.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Pietro Benetti Genolini ◽  
Matan Grinberg ◽  
Paul Richmond

Abstract We revisit the construction in four-dimensional gauged Spin(4) supergravity of the holographic duals to topologically twisted three-dimensional $$ \mathcal{N} $$ N = 4 field theories. Our focus in this paper is to highlight some subtleties related to preserving supersymmetry in AdS/CFT, namely the inclusion of finite counterterms and the necessity of a Legendre transformation to find the dual to the field theory generating functional. Studying the geometry of these supergravity solutions, we conclude that the gravitational free energy is indeed independent from the metric of the boundary, and it vanishes for any smooth solution.


Sign in / Sign up

Export Citation Format

Share Document