scholarly journals The Antarctic Submillimeter Telescope and Remote Observatory (AST/RO)

1996 ◽  
Vol 13 (1) ◽  
pp. 14-16 ◽  
Author(s):  
Simon P. Balm

AbstractThe Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) is a highly automated 1·7 m diameter telescope aimed at exploiting the superb submillimetre skies of the Antarctic Plateau for astronomy and aeronomy studies. It was recently installed at the Amundsen-Scott South Pole Station during the 1994/95 Austral season and is currently undergoing its first winter-over of operation. In this paper we briefly outline the capabilities of the instrument and describe some recent achievements culminating in the telescope’s first observations of the South Polar submillimetre sky.

Author(s):  
David Beerling

By arriving at the South Pole on 14 December 1911, the Norwegian explorer Roald Amundsen (1872–1928) reached his destination over a month ahead of the British effort led by Captain Robert Falcon Scott (1868–1912). As Scott’s party approached the South Pole on 17 January 1912, they were devastated to see from afar the Norwegian’s black flag. On arrival, they discovered the remains of his camp with ski and sledge tracks, and numerous dog footprints. Amundsen, it turned out, had used dogs and diversionary tactics to secure victory while the British team had man-hauled their sledges. These differences were not lost on The Times in London, which marked the achievement with muted praise, declaring it ‘not quite in accordance with the spirit of fair and open competition which hitherto marked Antarctic exploration’. Exhausted, Scott and his men spent time the following day making scientific observations around the Pole, erected ‘our poor slighted Union Jack’, and photographed themselves in front of it (Plate 11). Lieutenant Bowers took the picture by pulling a string to activate the shutter. It is perhaps the most well known, and at the same time the saddest picture, of the entire expedition—a poignant image of the doomed party, all of whom look utterly fed up as if somehow sensing the fate awaiting them. The cold weather, icy wind, and dismal circumstances led Scott to acerbically remark in his diary: ‘Great god! This is an awful place and terrible enough to have laboured to it without the reward of priority.’ By this time, the party had been hauling their sledges for weeks, and all the men were suffering from dehydration, owing to fatigue and altitude sickness from being on the Antarctic plateau that sits nearly 3000m above sea level. Three of them, Captain Oates, Seaman Evans, and Bowers, were badly afflicted with frostbitten noses and cheeks. Ahead lay the return leg, made all the more unbearable by the crippling psychological blow of knowing they had been second to the Pole. After a gruelling 21-day trek in bitterly cold summit winds, the team reached their first cache of food and fuel, covering the distance six days faster than it had taken them to do the leg in the other direction.


2004 ◽  
Vol 21 (3) ◽  
pp. 256-263 ◽  
Author(s):  
Paolo G. Calisse ◽  
Michael C. B. Ashley ◽  
Michael G. Burton ◽  
Michael A. Phillips ◽  
John W. V. Storey ◽  
...  

AbstractWe have developed a 350 μm radiometer to perform automated site testing in remote regions of Antarctica. In summer 2000–2001 the instrument operated at Concordia, a new station under construction at Dome C on the Antarctic Plateau. We present the results, and compare them with the atmospheric opacity measured at the South Pole in the same five-week period. During these five weeks, observing conditions at Dome C were, on average, substantially better than those at the South Pole.


2005 ◽  
Vol 18 (11) ◽  
pp. 1673-1696 ◽  
Author(s):  
Stephen R. Hudson ◽  
Richard E. Brandt

Abstract Data from radiosondes, towers, and a thermistor string are used to characterize the temperature inversion at two stations: the Amundsen-Scott Station at the South Pole, and the somewhat higher and colder Dome C Station at a lower latitude. Ten years of temperature data from a 22-m tower at the South Pole are analyzed. The data include 2- and 22-m temperatures for the entire period and 13-m temperatures for the last 2 yr. Statistics of the individual temperatures and the differences among the three levels are presented for summer (December and January) and winter (April–September). The relationships of temperature and inversion strength in the lowest 22 m with wind speed and downward longwave flux are examined for the winter months. Two preferred regimes, one warming and one cooling, are found in the temperature versus longwave flux data, but the physical causes of these regimes have not been determined. The minimum temperatures and the maximum inversions tend to occur not with calm winds, but with winds of 3–5 m s−1, likely due to the inversion wind. This inversion wind also explains why the near-surface winds at South Pole blow almost exclusively from the northeast quadrant. Temperature data from the surface to 2 m above the surface from South Pole in the winter of 2001 are presented, showing that the steepest temperature gradient in the entire atmosphere is in the lowest 20 cm. The median difference between the temperatures at 2 m and the surface is over 1.0 K in winter; under clear skies this difference increases to about 1.3 K. Monthly mean temperature profiles of the lowest 30 km of the atmosphere over South Pole are presented, based on 10 yr of radiosonde data. These profiles show large variations in lower-stratospheric temperatures, and in the strength and depth of the surface-based inversion. The near-destruction of a strong inversion at South Pole during 7 h on 8 September 1992 is examined using a thermal-conductivity model of the snowpack, driven by the measured downward longwave flux. The downward flux increased when a cloud moved over the station, and it seems that this increase in radiation alone can explain the magnitude and timing of the warming near the surface. Temperature data from the 2003/04 and 2004/05 summers at Dome C Station are presented to show the effects of the diurnal cycle of solar elevation over the Antarctic Plateau. These data include surface temperature and 2- and 30-m air temperatures, as well as radiosonde air temperatures. They show that strong inversions, averaging 10 K between the surface and 30 m, develop quickly at night when the sun is low in the sky, but are destroyed during the middle of the day. The diurnal temperature range at the surface was 13 K, but only 3 K at 30 m.


Author(s):  
Paolo Bernat

100 years ago, Antarctica was still mostly unknown and unexplored. The first landings on the Antarctic coast took place in the early decades of the nineteenth century and were made by whalers and sealers. In the following years the first scientific expeditions began and European and US expeditions started the geographical discovery and the mapping of the Antarctic coasts. But it was only in the years 1911-1912 that two expeditions, very different but equally well prepared, arrived almost simultaneously at the South Pole. The events that happened in the Antarctic together with the different nature of the two leaders Roald Amundsen and Robert Scott determined the outcome of these expeditions and the fate of their teams. The centenary of the conquest of the South Pole (December 14, 1911) is an opportunity to remember the passion for science, the spirit of adventure and the fierce perseverance that characterized those extraordinary men and that even now form the basis of scientific research and of human progress, not only in Antarctica but in all areas of knowledge and life.


Polar Record ◽  
2020 ◽  
Vol 56 ◽  
Author(s):  
Björn Lantz

Abstract This paper discusses an unsourced anecdote in Roland Huntford’s dual biography of Scott and Amundsen and their race for the South Pole; the first edition of the book was published in 1979. During a meeting between the Fram and Terra Nova in the Bay of Whales on 4 February 1911, Lieutenant Victor Campbell allegedly told Roald Amundsen—in order to deceive him—that one of the British motor sledges was “already on terra firma”. In a recent article in Polar Record, Huntford received criticism for (seemingly) having imagined the episode. However, a description of this incident, though with a slight variation compared to Huntford’s version, can be found in Tryggve Gran’s book, Kampen om Sydpolen [The Battle for the South Pole], published in 1961. Hence, one must conclude that Campbell really did try to mislead Amundsen regarding the motor sledges. Nevertheless, it is unlikely that the attempted deception had an impact on Amundsen’s plan for his south polar journey.


Author(s):  
G. E. Fogg

Beginning with its dispatch of Halley on his geomagnetic cruise of 1699 to 1700, the Royal Society has played a sporadic, ad hoc, but nevertheless considerable role in the scientific investigation of the South Polar regions. In three ventures—Ross's geomagnetic survey of 1839 to 1843, the first Scott expedition of 1901 to 1904 and the British contribution to the International Geophysical Year of 1957 to 1958—it made major contributions to the planning and support of Antarctic scientific programmes. Throughout, it has given backing to polar expeditions but has been consistent in putting science before geographical discovery. It has numbered some 20 Antarctic scientists among its Fellows.


A tracking radar and an optical range-finder, placed on a ship, were used to register the flight of eleven species of seabirds, in waters off the Antarctic Peninsula and in the Atlantic Ocean. Albatrosses under calm conditions used swell soaring, turning and twisting extensively within a width of 300-500 m laterally from the overall direction of movement. Their resulting travel speed was on average 10 m s -1 . In windy conditions the albatrosses as well as giant petrels travelled faster, with resulting speeds up to 22.5 m s -1 , by a combination of wave soaring and dynamic soaring. Shearwaters and the antarctic fulmar proceeded by flap-gliding, along tracks that were only slightly zigzag within 50-60 m from the resulting course of movement. The little shearwater flew faster, with an airspeed about 14 m s -1 , than larger-sized shearwaters and fulmars, using continuous flapping flight to a higher degree than its larger relatives. South polar skuas and Wilson’s storm-petrels were tracked on foraging flights, and flocks of imperial shags on commuting flights between feeding and breeding-roosting areas. The south polar skua was able to accelerate to airspeeds exceeding 20 m s -1 in pursuit flights after shags. Wilson’s storm-petrels showed significantly slower airspeeds in foraging flights as compared to non-foraging flights. Average airspeeds of most species fell between the minimum power and maximum range speeds estimated from aerodynamical theory. Species using gliding or flap-gliding flight showed a mean airspeed close to the gliding speed for best glide ratio. Optimal speeds in foraging flights, as expected for the south polar skuas and Wilson’s storm-petrels, are unlikely to coincide with the minimum power and maximum range speeds. Albatrosses reached the fastest resulting travel speeds when moving at angles 120°-150° from the wind (partly following winds), with strong wind forces. They predominantly travelled with the wind from their left side which, in the southern hemisphere, would lead them away from low pressure centres and towards high pressure areas.


Polar Record ◽  
1937 ◽  
Vol 2 (13) ◽  
pp. 57-59 ◽  
Author(s):  
Captain Helmer Hanssen

When I was asked by the Editor of The Polar Record to write a short note about sledge dogs, I did so, sensible of the appropriateness of the request, in that the year 1936 marks the twenty-fifth anniversary of Roald Amundsen's journey to the South Pole.A sledge dog seems, to have been made by nature for travelling in snow and ice, like the camel for the desert, the horse for the open land and the goat for the mountain. He sleeps comfortably in all kinds of weather, without shelter other than the snow; and when hungry, will eat any kind of food, as he needs must in barren countries, where food is scarce. I have known dogs enjoy a meal of bamboo sticks.


Sign in / Sign up

Export Citation Format

Share Document