The flourishing forests of Antarctica

Author(s):  
David Beerling

By arriving at the South Pole on 14 December 1911, the Norwegian explorer Roald Amundsen (1872–1928) reached his destination over a month ahead of the British effort led by Captain Robert Falcon Scott (1868–1912). As Scott’s party approached the South Pole on 17 January 1912, they were devastated to see from afar the Norwegian’s black flag. On arrival, they discovered the remains of his camp with ski and sledge tracks, and numerous dog footprints. Amundsen, it turned out, had used dogs and diversionary tactics to secure victory while the British team had man-hauled their sledges. These differences were not lost on The Times in London, which marked the achievement with muted praise, declaring it ‘not quite in accordance with the spirit of fair and open competition which hitherto marked Antarctic exploration’. Exhausted, Scott and his men spent time the following day making scientific observations around the Pole, erected ‘our poor slighted Union Jack’, and photographed themselves in front of it (Plate 11). Lieutenant Bowers took the picture by pulling a string to activate the shutter. It is perhaps the most well known, and at the same time the saddest picture, of the entire expedition—a poignant image of the doomed party, all of whom look utterly fed up as if somehow sensing the fate awaiting them. The cold weather, icy wind, and dismal circumstances led Scott to acerbically remark in his diary: ‘Great god! This is an awful place and terrible enough to have laboured to it without the reward of priority.’ By this time, the party had been hauling their sledges for weeks, and all the men were suffering from dehydration, owing to fatigue and altitude sickness from being on the Antarctic plateau that sits nearly 3000m above sea level. Three of them, Captain Oates, Seaman Evans, and Bowers, were badly afflicted with frostbitten noses and cheeks. Ahead lay the return leg, made all the more unbearable by the crippling psychological blow of knowing they had been second to the Pole. After a gruelling 21-day trek in bitterly cold summit winds, the team reached their first cache of food and fuel, covering the distance six days faster than it had taken them to do the leg in the other direction.

2004 ◽  
Vol 21 (3) ◽  
pp. 256-263 ◽  
Author(s):  
Paolo G. Calisse ◽  
Michael C. B. Ashley ◽  
Michael G. Burton ◽  
Michael A. Phillips ◽  
John W. V. Storey ◽  
...  

AbstractWe have developed a 350 μm radiometer to perform automated site testing in remote regions of Antarctica. In summer 2000–2001 the instrument operated at Concordia, a new station under construction at Dome C on the Antarctic Plateau. We present the results, and compare them with the atmospheric opacity measured at the South Pole in the same five-week period. During these five weeks, observing conditions at Dome C were, on average, substantially better than those at the South Pole.


1996 ◽  
Vol 13 (1) ◽  
pp. 14-16 ◽  
Author(s):  
Simon P. Balm

AbstractThe Antarctic Submillimeter Telescope and Remote Observatory (AST/RO) is a highly automated 1·7 m diameter telescope aimed at exploiting the superb submillimetre skies of the Antarctic Plateau for astronomy and aeronomy studies. It was recently installed at the Amundsen-Scott South Pole Station during the 1994/95 Austral season and is currently undergoing its first winter-over of operation. In this paper we briefly outline the capabilities of the instrument and describe some recent achievements culminating in the telescope’s first observations of the South Polar submillimetre sky.


2005 ◽  
Vol 18 (11) ◽  
pp. 1673-1696 ◽  
Author(s):  
Stephen R. Hudson ◽  
Richard E. Brandt

Abstract Data from radiosondes, towers, and a thermistor string are used to characterize the temperature inversion at two stations: the Amundsen-Scott Station at the South Pole, and the somewhat higher and colder Dome C Station at a lower latitude. Ten years of temperature data from a 22-m tower at the South Pole are analyzed. The data include 2- and 22-m temperatures for the entire period and 13-m temperatures for the last 2 yr. Statistics of the individual temperatures and the differences among the three levels are presented for summer (December and January) and winter (April–September). The relationships of temperature and inversion strength in the lowest 22 m with wind speed and downward longwave flux are examined for the winter months. Two preferred regimes, one warming and one cooling, are found in the temperature versus longwave flux data, but the physical causes of these regimes have not been determined. The minimum temperatures and the maximum inversions tend to occur not with calm winds, but with winds of 3–5 m s−1, likely due to the inversion wind. This inversion wind also explains why the near-surface winds at South Pole blow almost exclusively from the northeast quadrant. Temperature data from the surface to 2 m above the surface from South Pole in the winter of 2001 are presented, showing that the steepest temperature gradient in the entire atmosphere is in the lowest 20 cm. The median difference between the temperatures at 2 m and the surface is over 1.0 K in winter; under clear skies this difference increases to about 1.3 K. Monthly mean temperature profiles of the lowest 30 km of the atmosphere over South Pole are presented, based on 10 yr of radiosonde data. These profiles show large variations in lower-stratospheric temperatures, and in the strength and depth of the surface-based inversion. The near-destruction of a strong inversion at South Pole during 7 h on 8 September 1992 is examined using a thermal-conductivity model of the snowpack, driven by the measured downward longwave flux. The downward flux increased when a cloud moved over the station, and it seems that this increase in radiation alone can explain the magnitude and timing of the warming near the surface. Temperature data from the 2003/04 and 2004/05 summers at Dome C Station are presented to show the effects of the diurnal cycle of solar elevation over the Antarctic Plateau. These data include surface temperature and 2- and 30-m air temperatures, as well as radiosonde air temperatures. They show that strong inversions, averaging 10 K between the surface and 30 m, develop quickly at night when the sun is low in the sky, but are destroyed during the middle of the day. The diurnal temperature range at the surface was 13 K, but only 3 K at 30 m.


Author(s):  
Paolo Bernat

100 years ago, Antarctica was still mostly unknown and unexplored. The first landings on the Antarctic coast took place in the early decades of the nineteenth century and were made by whalers and sealers. In the following years the first scientific expeditions began and European and US expeditions started the geographical discovery and the mapping of the Antarctic coasts. But it was only in the years 1911-1912 that two expeditions, very different but equally well prepared, arrived almost simultaneously at the South Pole. The events that happened in the Antarctic together with the different nature of the two leaders Roald Amundsen and Robert Scott determined the outcome of these expeditions and the fate of their teams. The centenary of the conquest of the South Pole (December 14, 1911) is an opportunity to remember the passion for science, the spirit of adventure and the fierce perseverance that characterized those extraordinary men and that even now form the basis of scientific research and of human progress, not only in Antarctica but in all areas of knowledge and life.


1950 ◽  
Vol 45 ◽  
pp. 261-298 ◽  
Author(s):  
J. M. Cook ◽  
R. V. Nicholls

The village of Kalývia Sokhás lies against the base of one of the massive foothills in which Taygetus falls to the plain three or four miles to the south of Sparta (Plate 26, 1). It is bounded by two rivers which flow down in deep clefts from the mountain shelf. The hillside above rises steeply to a summit which is girt with cliffs on all but the west side and cannot be much less than four thousand feet above sea level; this von Prott believed to be the peak of Taleton. Its summit is crowned by the ruins of a mediaeval castle which was undoubtedly built as a stronghold to overlook the Spartan plain; the only dateable object found there, a sherd of elaborate incised ware, indicates occupation at the time when the Byzantines were in possession of Mystra. The location of the other sites mentioned by Pausanias in this region remains obscure, but fortunately that of the Spartan Eleusinion has not been in doubt since von Prott discovered a cache of inscriptions at the ruined church of H. Sophia in the village of Kalývia Sokhás. In 1910 Dawkins dug trenches at the foot of the slope immediately above the village and recovered a fragment of a stele relating to the cult of the goddesses and pieces of inscribed tiles from the sanctuary. The abundance of water in the southern ravine led von Prott to conclude that the old town of Bryseai with its cult of Dionysus also lay at Kalývia Sokhás; but no traces of urban settlement have come to light at the village, and the name rather suggests copious springs such as issue from the mountain foot at Kefalári a mile to the north where ancient blocks are to be seen in the fields.


Polar Record ◽  
1960 ◽  
Vol 10 (64) ◽  
pp. 3-10 ◽  
Author(s):  
G. de Q. Robin

The art, science and sport of conducting scientific traverses across the Antarctic continent has advanced so rapidly during the past decade that we are making considerable progress towards understanding the main characteristics of that continent and its ice mantle. Many reports of recent work are provisional, so some changes of detail in the following account may eventually prove necessary. Nevertheless, some major features are now well established, such as the great depth of the subglacial floor to the east of the Ross Sea, and the observations that show considerable sections of the rock of East Antarctica† to be above sea level. On the other hand, the past glaciological history of the continent and the state of the present mass balance of the ice sheet still need much more investigation before we can be satisfied with the answers. The continued activity in Antarctica should result in our knowledge of the continent advancing much further during the coming decade.


2002 ◽  
Vol 19 (3) ◽  
pp. 328-336 ◽  
Author(s):  
J. S. Lawrence ◽  
M. C. B. Ashley ◽  
M. G. Burton ◽  
P. G. Calisse ◽  
J. R. Everett ◽  
...  

AbstractThe near infrared sky spectral brightness has been measured at the South Pole with the Near Infrared Sky Monitor (NISM) throughout the 2001 winter season. The sky is found to be typically more than an order of magnitude darker than at temperate latitude sites, consistent with previous South Pole observations. Reliable robotic operation of the NISM, a low power, autonomous instrument, has been demonstrated throughout the Antarctic winter. Data analysis yields a median winter value of the 2.4μm (Kdark) sky spectral brightness of ˜120μJy arcsec−2 and an average of 210 ± 80μJy arcsec−2. The 75%, 50%, and 25% quartile values are 270 ± 100, 155 ± 60, and 80 ± 30μJy arcsec−2, respectively.


2009 ◽  
Vol 5 (H15) ◽  
pp. 614-615
Author(s):  
Michael G. Burton

AbstractThis article summarises the subject matter of Special Session 3 at IAU General Assembly XXVII in Rio de Janeiro, Brazil, which took place on August 6-7, 2009. In it, we overview the state of Astronomy in Antarctica as it is in 2009. Significant astronomical activity is now taking place at four stations on the Antarctic plateau (South Pole, Domes A, C & F), as well as at the coastal station of McMurdo.


2012 ◽  
Vol 20 (4) ◽  
pp. 169-172 ◽  
Author(s):  
Kevin Brown

Dr Edward Wilson was a polar explorer who accompanied Robert Falcon Scott (1868–1912) on his expeditions to Antarctica in 1900 and 1910. He went with Scott to the South Pole and died with him on the return journey in 1912. Although medically qualified, he is now remembered more as a naturalist and as a talented artist recording the Antarctic expeditions.


Sign in / Sign up

Export Citation Format

Share Document