scholarly journals Structure of the histone mRNA hairpin required for cell cycle regulation of histone gene expression

RNA ◽  
2002 ◽  
Vol 8 (1) ◽  
pp. 29-46 ◽  
Author(s):  
KATIA ZANIER ◽  
INGRID LUYTEN ◽  
CATRIONA CROMBIE ◽  
BERNDT M??LLER ◽  
DANIEL SCH??MPERLI ◽  
...  
Cell ◽  
1986 ◽  
Vol 45 (4) ◽  
pp. 471-472 ◽  
Author(s):  
Daniel Schümperli

1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937 ◽  
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


1980 ◽  
Vol 255 (15) ◽  
pp. 7386-7390
Author(s):  
L.G. Navalgund ◽  
C. Rossana ◽  
A.J. Muench ◽  
L.F. Johnson

2012 ◽  
Vol 32 (19) ◽  
pp. 3860-3871 ◽  
Author(s):  
R. Medina ◽  
P. N. Ghule ◽  
F. Cruzat ◽  
A. R. Barutcu ◽  
M. Montecino ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 4790-4790
Author(s):  
Paola Neri ◽  
Teresa Calimeri ◽  
Mariateresa Di Martino ◽  
Marco Rossi ◽  
Orietta Eramo ◽  
...  

Abstract Valproic acid (VPA) is a well-tolerated anticonvulsant drug that has been recently recognized as powerful histone deacetylase (HDCA) inhibitor. VPA induces hyperacetylation of histone H3 and H4 and inhibits both class I and II HDCACs. Recently it has been shown that VPA exerts in vitro and in vivo anti-tumor activity against solid cancers and its in vitro anti-Multiple Myeloma (MM) activity has been previously reported. However, the molecular mechanisms are still unclear. Here we have investigated molecular changes induced by VPA as well as its in vivo activity in murine models of MM. We first studied the in vitro activity of VPA against IL-6 independent as well as IL-6 dependent MM cells. A time- and dose-dependent decrease in proliferation and survival of MM cell lines was observed (IC50 in the range of 1–3 mM). Gene expression profile following treatment with VPA at 2 and 5 mM showed down-regulation of genes involved in cell cycle regulation, DNA replication and transcription as well as up-regulation of genes implicated in apoptosis and chemokine pathways. The signaling pathway analysis performed by Ingenuity Systems Software identified the cell growth, cell cycle, cell death as well as DNA replication and repair as the most important networks modulated by VPA treatment. We next evaluated the in vivo activity of VPA using two xenograft models of human MM. A cohort of SCID mice bearing subcutaneous MM1s or OPM1 were treated i.p. daily with VPA (200 mg/kg, and 300 mg/kg, n=5 mice, respectively), or vehicle alone (n=5 mice) for 16 consecutive days. Tumors were measured every 2 days, and survival was calculated using the Kaplan Mayer method. Following VPA treatment, we found a significant (p=0.006) inhibition of tumor growth in mice bearing subcutaneous MM-1s cells treated with VPA at 200 mg/kg compared to control group, which translated into a significant (p= 0.002) survival advantage in the VPA treated animals. Similar results were obtained in animals bearing subcutaneous OPM1 cells. Flow cytometry analysis performed on retrieved tumor tissues from animals showed reduction of G2-M and S phase in tumor specimens following VPA treatment, versus untreated tumors, strongly suggesting in vivo effects of VPA on cell cycle regulation. Taken together, our data demonstrate the in vitro and in vivo anti-tumor activity of VPA, delineate potential molecular targets triggered by this agent and provide a preclinical rationale for its clinical evaluation, both as a single agent or in combination, to improve patient outcome in MM.


1984 ◽  
Vol 4 (7) ◽  
pp. 1363-1371 ◽  
Author(s):  
S J Flint ◽  
M A Plumb ◽  
U C Yang ◽  
G S Stein ◽  
J L Stein

The influence of adenovirus type 2 infection of HeLa cells upon expression of human histone genes was examined as a function of the period of infection. Histone RNA synthesis was assayed after run-off transcription in nuclei isolated from mock-infected cells and after various periods of adenovirus infection. Histone protein synthesis was measured by [3H]leucine labeling of intact cells and fluorography of electrophoretically fractionated nuclear and cytoplasmic proteins. The cellular representation of RNA species complementary to more than 13 different human histone genes was determined by RNA blot analysis of total cellular, nuclear or cytoplasmic RNA by using a series of 32P-labeled cloned human histone genes as hybridization probes and also by analysis of 3H-labeled histone mRNA species synthesized in intact cells. By 18 h after infection, HeLa cell DNA synthesis and all parameters of histone gene expression, including transcription and the nuclear and cytoplasmic concentrations of core and H1 mRNA species, were reduced to less than 5 to 10% of the control values. By contrast, transcription and processing of other cellular mRNA sequences have been shown to continue throughout this period of infection. The early period of adenovirus infection was marked by an inhibition of transcription of histone genes that accompanied the reduction in rate of HeLa cell DNA synthesis. These results suggest that the adenovirus-induced inhibition of histone gene expression is mediated in part at the transcriptional level. However, the persistence of histone mRNA species at concentrations comparable to those of mock-infected control cells during the early phase of the infection, despite a reduction in histone gene transcription and histone protein synthesis, implies that histone gene expression is also regulated post-transcriptionally in adenovirus-infected cells. These results suggest that the tight coupling between histone mRNA concentrations and the rate of cellular DNA synthesis, observed when DNA replication is inhibited by a variety of drugs, is not maintained after adenovirus infection.


Cell ◽  
1981 ◽  
Vol 24 (2) ◽  
pp. 367-375 ◽  
Author(s):  
Lynna M. Hereford ◽  
Mary Ann Osley ◽  
J.Richard Ludwig II ◽  
Calvin S. McLaughlin

Sign in / Sign up

Export Citation Format

Share Document