Distinct replication-independent and -dependent phases of histone gene expression during the Physarum cell cycle

1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.

1987 ◽  
Vol 7 (5) ◽  
pp. 1933-1937 ◽  
Author(s):  
J J Carrino ◽  
V Kueng ◽  
R Braun ◽  
T G Laffler

During the S phase of the cell cycle, histone gene expression and DNA replication are tightly coupled. In mitotically synchronous plasmodia of the myxomycete Physarum polycephalum, which has no G1 phase, histone mRNA synthesis begins in mid-G2 phase. Although histone gene transcription is activated in the absence of significant DNA synthesis, our data demonstrate that histone gene expression became tightly coupled to DNA replication once the S phase began. There was a transition from the replication-independent phase to the replication-dependent phase of histone gene expression. During the first phase, histone mRNA synthesis appears to be under direct cell cycle control; it was not coupled to DNA replication. This allowed a pool of histone mRNA to accumulate in late G2 phase, in anticipation of future demand. The second phase began at the end of mitosis, when the S phase began, and expression became homeostatically coupled to DNA replication. This homeostatic control required continuing protein synthesis, since cycloheximide uncoupled transcription from DNA synthesis. Nuclear run-on assays suggest that in P. polycephalum this coupling occurs at the level of transcription. While histone gene transcription appears to be directly switched on in mid-G2 phase and off at the end of the S phase by cell cycle regulators, only during the S phase was the level of transcription balanced with the rate of DNA synthesis.


1992 ◽  
Vol 12 (11) ◽  
pp. 5249-5259 ◽  
Author(s):  
H Xu ◽  
U J Kim ◽  
T Schuster ◽  
M Grunstein

Histone mRNA synthesis is tightly regulated to S phase of the yeast Saccharomyces cerevisiae cell cycle as a result of transcriptional and posttranscriptional controls. Moreover, histone gene transcription decreases rapidly if DNA replication is inhibited by hydroxyurea or if cells are arrested in G1 by the mating pheromone alpha-factor. To identify the transcriptional controls responsible for cycle-specific histone mRNA synthesis, we have developed a selection for mutations which disrupt this process. Using this approach, we have isolated five mutants (hpc1, hpc2, hpc3, hpc4, and hpc5) in which cell cycle regulation of histone gene transcription is altered. All of these mutations are recessive and belong to separate complementation groups. Of these, only one (hpc1) falls in one of the three complementation groups identified previously by other means (M. A. Osley and D. Lycan, Mol. Cell. Biol. 7:4204-4210, 1987), indicating that at least seven different genes are involved in the cell cycle-specific regulation of histone gene transcription. hpc4 is unique in that derepression occurs only in the presence of hydroxyurea but not alpha-factor, suggesting that at least one of the regulatory factors is specific to histone gene transcription after DNA replication is blocked. One of the hpc mutations (hpc2) suppresses delta insertion mutations in the HIS4 and LYS2 loci. This effect allowed the cloning and sequence analysis of HPC2, which encodes a 67.5-kDa, highly charged basic protein.


1984 ◽  
Vol 4 (7) ◽  
pp. 1363-1371 ◽  
Author(s):  
S J Flint ◽  
M A Plumb ◽  
U C Yang ◽  
G S Stein ◽  
J L Stein

The influence of adenovirus type 2 infection of HeLa cells upon expression of human histone genes was examined as a function of the period of infection. Histone RNA synthesis was assayed after run-off transcription in nuclei isolated from mock-infected cells and after various periods of adenovirus infection. Histone protein synthesis was measured by [3H]leucine labeling of intact cells and fluorography of electrophoretically fractionated nuclear and cytoplasmic proteins. The cellular representation of RNA species complementary to more than 13 different human histone genes was determined by RNA blot analysis of total cellular, nuclear or cytoplasmic RNA by using a series of 32P-labeled cloned human histone genes as hybridization probes and also by analysis of 3H-labeled histone mRNA species synthesized in intact cells. By 18 h after infection, HeLa cell DNA synthesis and all parameters of histone gene expression, including transcription and the nuclear and cytoplasmic concentrations of core and H1 mRNA species, were reduced to less than 5 to 10% of the control values. By contrast, transcription and processing of other cellular mRNA sequences have been shown to continue throughout this period of infection. The early period of adenovirus infection was marked by an inhibition of transcription of histone genes that accompanied the reduction in rate of HeLa cell DNA synthesis. These results suggest that the adenovirus-induced inhibition of histone gene expression is mediated in part at the transcriptional level. However, the persistence of histone mRNA species at concentrations comparable to those of mock-infected control cells during the early phase of the infection, despite a reduction in histone gene transcription and histone protein synthesis, implies that histone gene expression is also regulated post-transcriptionally in adenovirus-infected cells. These results suggest that the tight coupling between histone mRNA concentrations and the rate of cellular DNA synthesis, observed when DNA replication is inhibited by a variety of drugs, is not maintained after adenovirus infection.


2007 ◽  
Vol 35 (5) ◽  
pp. 1369-1371 ◽  
Author(s):  
B. Müller ◽  
J. Blackburn ◽  
C. Feijoo ◽  
X. Zhao ◽  
C. Smythe

In metazoans, accurate replication of chromosomes is ensured by the coupling of DNA synthesis to the synthesis of histone proteins. Expression of replication-dependent histone genes is restricted to S-phase by a combination of cell cycle-regulated transcriptional and post-transcriptional control mechanisms and is linked to DNA replication by a poorly understood mechanism involving checkpoint kinases [Su, Gao, Schneider, Helt, Weiss, O'Reilly, Bohmann and Zhao (2004) EMBO J. 23, 1133–1143; Kaygun and Marzluff (2005) Nat. Struct. Mol. Biol. 12, 794–800]. Here we propose a model for the molecular mechanisms that link these two important processes within S-phase, and propose roles for multiple checkpoints in this mechanism.


1996 ◽  
Vol 16 (5) ◽  
pp. 1889-1895 ◽  
Author(s):  
F Oswald ◽  
T Dobner ◽  
M Lipp

Histone gene expression is restricted to the S phase of the cell cycle. Control is mediated by a complex network of sequence-specific DNA-binding factors and protein-protein interactions in response to cell cycle progression. To further investigate the regulatory functions that are associated at the transcriptional level, we analyzed the regulation of a replication-dependent human H2A.1-H2B.2 gene pair. We found that transcription factor E2F binds specifically to an E2F recognition motif in the H2A.1 promoter region. Activation of the H2A.1 promoter by E2F-1 was shown by use of luciferase reporter constructs of the intergenic promoter region. Overexpression of the human retinoblastoma suppressor gene product RB suppressed E2F-1 mediated transcriptional activation, indicating an E2F-dependent regulation of promoter activity during the G1-to-S-phase transition. Furthermore, the activity of the H2A.1 promoter was also downregulated by overexpression of the RB-related p107, a protein that has been detected in S-phase-specific protein complexes of cyclin A, E2F, and cdk2. In synchronized HeLa cells, expression of luciferase activity was induced at the beginning of DNA synthesis and was dependent on the presence of an E2F-binding site in the H2A.1 promoter. Together with the finding that E2F-binding motifs are highly conserved in H2A promoters of other species, our results suggest that E2F plays an important role in the coordinate regulation of S-phase-specific histone gene expression.


2012 ◽  
Vol 40 (4) ◽  
pp. 880-885 ◽  
Author(s):  
Alexander M.J. Rattray ◽  
Berndt Müller

Histone proteins are essential for the packaging of DNA into chromosomes. Histone gene expression is cell-cycle-regulated and coupled to DNA replication. Control of histone gene expression occurs at the transcriptional and post-transcriptional level and ensures that a fine balance between histone abundance and DNA replication is maintained for the correct packaging of newly replicated DNA into chromosomes. In the present paper, we review histone gene expression, highlighting the control mechanisms and key molecules involved in this process.


1982 ◽  
Vol 57 (1) ◽  
pp. 139-150
Author(s):  
P.N. Schofield ◽  
I.O. Walker

Synchronous cultures of Physarum polycephalum were pulsed with [3H]lysine hydrochloride in S and G2 phases of the cell cycle. Plasmodial extracts were separated into nuclear, ribosomal and acid-soluble post-ribosomal cytoplasmic fractions. Core histones could be detected by staining in the nuclear fractions of both S and G2 phases, but were not detected by staining in the cytoplasmic fractions. Newly synthesized histone was present in S-phase nuclei but not in S-phase cytoplasm. The specific activity of newly synthesized histone in G2-phase nuclei decreased by at least 95% compared to S phase and no newly synthesized histone was observed in G2-phase cytoplasmic fractions. Thus histone synthesis is restricted to S phase. There are no free pools of histone in the cytoplasm of Physarum in either S or G2 phases of the cell cycle.


RNA ◽  
2002 ◽  
Vol 8 (1) ◽  
pp. 29-46 ◽  
Author(s):  
KATIA ZANIER ◽  
INGRID LUYTEN ◽  
CATRIONA CROMBIE ◽  
BERNDT M??LLER ◽  
DANIEL SCH??MPERLI ◽  
...  

1992 ◽  
Vol 12 (11) ◽  
pp. 5249-5259 ◽  
Author(s):  
H Xu ◽  
U J Kim ◽  
T Schuster ◽  
M Grunstein

Histone mRNA synthesis is tightly regulated to S phase of the yeast Saccharomyces cerevisiae cell cycle as a result of transcriptional and posttranscriptional controls. Moreover, histone gene transcription decreases rapidly if DNA replication is inhibited by hydroxyurea or if cells are arrested in G1 by the mating pheromone alpha-factor. To identify the transcriptional controls responsible for cycle-specific histone mRNA synthesis, we have developed a selection for mutations which disrupt this process. Using this approach, we have isolated five mutants (hpc1, hpc2, hpc3, hpc4, and hpc5) in which cell cycle regulation of histone gene transcription is altered. All of these mutations are recessive and belong to separate complementation groups. Of these, only one (hpc1) falls in one of the three complementation groups identified previously by other means (M. A. Osley and D. Lycan, Mol. Cell. Biol. 7:4204-4210, 1987), indicating that at least seven different genes are involved in the cell cycle-specific regulation of histone gene transcription. hpc4 is unique in that derepression occurs only in the presence of hydroxyurea but not alpha-factor, suggesting that at least one of the regulatory factors is specific to histone gene transcription after DNA replication is blocked. One of the hpc mutations (hpc2) suppresses delta insertion mutations in the HIS4 and LYS2 loci. This effect allowed the cloning and sequence analysis of HPC2, which encodes a 67.5-kDa, highly charged basic protein.


Sign in / Sign up

Export Citation Format

Share Document