Multi-Mode Light Microscopy of Microtubule and Endoplasmic Reticulum Dynamics in Migrating Newt Epithelial Cells.

1997 ◽  
Vol 3 (S2) ◽  
pp. 211-212
Author(s):  
C. M. Waterman-Storer ◽  
E. D. Salmon

We have developed a multi-mode digital imaging system (1-3) which acquires images with a 12 bit cooled CCD camera. A multiple band pass dichromatic mirror and robotically controlled excitation filter wheels provide rapid wavelength selection for epi-fluorescence with DAPI, fluorescein or GFP and X-rhodamine fluorophores while maintaining image registration on the cooled CCD detector. Shutters select illumination either by epi-fluorescence or by transmitted light for phase contrast or DIC. A robotically controlled emission filter wheel in front of the CCD camera inserts an analyzer in the light path for DIC imaging. To maximize fluorescence light intensity, the analyzer is removed and an optical flat of equivalent optical thickness is inserted for fluorescence imaging. A slider is inserted at the field diaphragm position of the fluorescence epi-illuminator to provide in-focus slit and spot targets for 360 nm photoactivation of “caged” fluorophores. The microscope system is robotically controlled and image acquisition and analysis is performed using MetaMorph™ digital imaging software.

Author(s):  
E. D. Salmon ◽  
J. C. Waters ◽  
C. Waterman-Storer

We have developed a multi-mode digital imaging system which acquires images with a cooled CCD camera (Figure 1). A multiple band pass dichromatic mirror and robotically controlled filter wheels provide wavelength selection for epi-fluorescence. Shutters select illumination either by epi-fluorescence or by transmitted light for phase contrast or DIC. Many of our experiments involve investigations of spindle assembly dynamics and chromosome movements in live cells or unfixed reconstituted preparations in vitro in which photodamage and phototoxicity are major concerns. As a consequence, a major factor in the design was optical efficiency: achieving the highest image quality with the least number of illumination photons. This principle applies to both epi-fluorescence and transmitted light imaging modes. In living cells and extracts, microtubules are visualized using X-rhodamine labeled tubulin. Photoactivation of C2CF-fluorescein labeled tubulin is used to locally mark microtubules in studies of microtubule dynamics and translocation. Chromosomes are labeled with DAPI or Hoechst DNA intercalating dyes.


1997 ◽  
Vol 3 (S2) ◽  
pp. 1125-1126
Author(s):  
S.J. Pan ◽  
A. Shih ◽  
W.S. Liou ◽  
M.S. Park ◽  
G. Wang ◽  
...  

An experimental X-ray cone-beam microtomographic imaging system utilizing a generalized Feldkamp reconstruction algorithm has been developed in our laboratory. This microtomographic imaging system consists of a conventional dental X-ray source (Aztech 65, Boulder, CO), a sample position and rotation stage, an X-ray scintillation phosphor screen, and a high resolution slow scan cooled CCD camera (Kodak KAF 1400). A generalized Feldkamp cone-beam algorithm was used to perform tomographic reconstruction from cone-beam projection data. This algorithm was developed for various hardware configuration to perform reconstruction of spherical, rod-shaped and plate-like specimen.A test sample consists of 8 glass beads (approx. 800μm in diameter) dispersed in an epoxy-filled #0 gelatin capsule. One hundred X-ray projection images were captured equal angularly (at 3.6 degree spacing) by the cooled CCD camera at a of 1317×967 (17×17mm2) pixels with 12-bit dynamic range. Figure 1 shows a 3D isosurface rendering of the test sample. The eight glass beads and trapped air bubbles (arrows) in the epoxy resin (e) are clearly visible.


2001 ◽  
Vol 290 (2) ◽  
pp. 214-220 ◽  
Author(s):  
Wei Zheng ◽  
Steven S. Carroll ◽  
James Inglese ◽  
Robert Graves ◽  
Leighton Howells ◽  
...  

Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


2001 ◽  
Author(s):  
Naoki Saitoh ◽  
Kenro Kuroki ◽  
Kenji Kurosawa ◽  
Norimitsu Akiba

2010 ◽  
Vol E93-B (4) ◽  
pp. 811-818 ◽  
Author(s):  
Keiki TAKADAMA ◽  
Kazuyuki HIROSE ◽  
Hiroyasu MATSUSHIMA ◽  
Kiyohiko HATTORI ◽  
Nobuo NAKAJIMA

1998 ◽  
Vol 5 (3) ◽  
pp. 642-644 ◽  
Author(s):  
J. Y. Huang ◽  
I. S. Ko

A diagnostic beamline is being constructed in the PLS storage ring for measurement of electron- and photon-beam properties. It consists of two 1:1 imaging systems: a visible-light imaging system and a soft X-ray imaging system. In the visible-light imaging system, the transverse beam size and beam position are measured with various detectors: a CCD camera, two photodiode arrays and a photon-beam position monitor. Longitudinal bunch structure is also investigated with a fast photodiode detector and a picosecond streak camera. On the other hand, the soft X-ray imaging system is under construction to measure beam sizes with negligible diffraction-limited error. The X-ray image optics consist of a flat cooled mirror and two spherical focusing mirrors.


Sign in / Sign up

Export Citation Format

Share Document