Gamma-ray imaging with an image intensifier and a cooled CCD camera

2001 ◽  
Author(s):  
Naoki Saitoh ◽  
Kenro Kuroki ◽  
Kenji Kurosawa ◽  
Norimitsu Akiba
2008 ◽  
Author(s):  
Adric Eckstein ◽  
Pavlos Vlachos

Micro-PIV experiments rely upon the use of a microscope to achieve the higher spatial resolution. However, several optical limitations are introduced at these scales [1–3]. In addition, due to the low illumination levels, micro-PIV experiments require the use of either a cooled CCD camera or an image intensifier to provide increased signal-to-noise ratio. Although CCD cameras offer superior sensitivity and signal to noise ratio, intensified CMOS cameras offer an attractive alternative for performing high frequency measurements. However, intensified cameras are known to introduce artifacts such as added background noise. This study examines these issues and the feasibility of employing such technologies for microPIV through the use of the IDT-X5 intensified CMOS camera, capable of 500 Hz at a resolution of 2352×1728 pixels, with pulse separations as low as 2μs.


Author(s):  
Ikuo Arata ◽  
Shigeru Sakamoto ◽  
Yoshiyuki Yokoyama ◽  
Hirotoshi Terada

Abstract SIL(Solid Immersion Lens) is well investigated for optical pickup application because of its capability of high resolution. We applied this technique to microscopy, especially for precise observation of semiconductors. And also we applied it to fault isolation techniques like emission microscopy , OBIRCH(Optical Beam Induced Resistance Change) and TIVA,SEI. We found significant enhancement of resolution and sensitvity by using SIL. Applying this technique to emission microscopy, we should be aware of optical absorption charactristics of SIL lens materials. We investigated proper SIL lens materials for emission microscopy and laser scanning applications, and checked performance of Si(Silicon)-SIL and GaP(Gallium phosphide)-SIL. We also compared combinations of some kinds of SILs and detectors like C-CCD(cooled CCD) camera, MCT(HgCdTe) camera and position sensitive detector with InGaAs photo cathode II(image intensifier).


Author(s):  
W.F. Marshall ◽  
K. Oegema ◽  
J. Nunnari ◽  
A.F. Straight ◽  
D.A. Agard ◽  
...  

The ability to image cells in three dimensions has brought about a revolution in biological microscopy, enabling many questions to be asked which would be inaccessible without this capability. There are currently two major methods of three dimensional microscopy: laser-scanning confocal microscopy and widefield-deconvolution microscopy. The method of widefield-deconvolution uses a cooled CCD to acquire images from a standard widefield microscope, and then computationally removes out of focus blur. Using such a scheme, it is easy to acquire time-lapse 3D images of living cells without killing them, and to do so for multiple wavelengths (using computer-controlled filter wheels). Thus, it is now not only feasible, but routine, to perform five dimensional microscopy (three spatial dimensions, plus time, plus wavelength).Widefield-deconvolution has several advantages over confocal microscopy. The two main advantages are high speed of acquisition (because there is no scanning, a single optical section is acquired at a time by using a cooled CCD camera) and the use of low excitation light levels Excitation intensity can be much lower than in a confocal microscope for three reasons: 1) longer exposures can be taken since the entire 512x512 image plane is acquired in parallel, so that dwell time is not an issue, 2) the higher quantum efficiently of a CCD detect over those typically used in confocal microscopy (although this is expected to change due to advances in confocal detector technology), and 3) because no pinhole is used to reject light, a much larger fraction of the emitted light is collected. Thus we can typically acquire images with thousands of photons per pixel using a mercury lamp, instead of a laser, for illumination. The use of low excitation light is critical for living samples, and also reduces bleaching. The high speed of widefield microscopy is also essential for time-lapse 3D microscopy, since one must acquire images quickly enough to resolve interesting events.


1989 ◽  
Vol 136 ◽  
pp. 581-585
Author(s):  
W. R. Cook ◽  
D. M. Palmer ◽  
T. A. Prince ◽  
S. M. Schindler ◽  
C. H. Starr ◽  
...  

The Caltech imaging γ-ray telescope was launched by balloon from Alice Springs, NT, Australia and performed observations of the galactic center during the period 12.62 to 13.00 April 1988 UT. The first coded-aperture images of the galactic center region at energies above 30 keV show a single strong γ-ray source which is located 0.7±0.1° from the galactic nucleus and is tentatively identified as 1E1740.7-2942. If the source is at the distance of the galactic center, it is one of the most luminous objects in the galaxy at energies from 35 to 200 keV.


Author(s):  
J.W. LeBlanc ◽  
N.H. Clinthorne ◽  
C.-H. Hua ◽  
E. Nygard ◽  
W.L. Rogers ◽  
...  

2002 ◽  
Vol 17 (12n13) ◽  
pp. 1799-1808 ◽  
Author(s):  
MARCO TAVANI

Gamma-ray astrophysics in the energy range between 30 MeV and 30 GeV is in desperate need of arcminute angular resolution and source monitoring capability. The AGILE Mission planned to be operational in 2004-2006 will be the only space mission entirely dedicated to gamma-ray astrophysics above 30 MeV. The main characteristics of AGILE are the simultaneous X-ray and gamma-ray imaging capability (reaching arcminute resolution) and excellent gamma-ray timing (10-100 microseconds). AGILE scientific program will emphasize a quick response to gamma-ray transients and multiwavelength studies of gamma-ray sources.


1991 ◽  
Vol 30 (5) ◽  
pp. 549 ◽  
Author(s):  
J. Jimenez ◽  
Pedro Olmos ◽  
J. L. de Pablos ◽  
J. M. Perez

Sign in / Sign up

Export Citation Format

Share Document