Visualization of the Coalescence of Bismuth Nanoparticles

2014 ◽  
Vol 20 (2) ◽  
pp. 416-424 ◽  
Author(s):  
Kai-Yang Niu ◽  
Hong-Gang Liao ◽  
Haimei Zheng

AbstractCoalescence is a significant pathway for the growth of nanostructures. Here we studied the coalescence of Bi nanoparticles in situ by liquid cell transmission electron microscopy (TEM). The growth of Bi nanoparticles was initiated from a bismuth neodecanoate precursor solution by electron beam irradiation inside a liquid cell under the TEM. A significant number of coalescence events occurred from the as-grown Bi nanodots. Both symmetric coalescence of two equal-sized nanoparticles and asymmetric coalescence of two or more unequal-sized nanoparticles were analyzed along their growth trajectories. Our observation suggests that two mass transport mechanisms, i.e., surface diffusion and grain boundary diffusion, are responsible for the shape evolution of nanoparticles after a coalescence event.

Microscopy ◽  
2020 ◽  
Author(s):  
Xiaoguang Li ◽  
Kazutaka Mitsuishi ◽  
Masaki Takeguchi

Abstract Liquid cell transmission electron microscopy (LCTEM) enables imaging of dynamic processes in liquid with high spatial and temporal resolution. The widely used liquid cell (LC) consists of two stacking microchips with a thin wet sample sandwiched between them. The vertically overlapped electron-transparent membrane windows on the microchips provide passage for the electron beam. However, microchips with imprecise dimensions usually cause poor alignment of the windows and difficulty in acquiring high-quality images. In this study, we developed a new and efficient microchip fabrication process for LCTEM with a large viewing area (180 µm × 40 µm) and evaluated the resultant LC. The new positioning reference marks on the surface of the Si wafer dramatically improve the precision of dicing the wafer, making it possible to accurately align the windows on two stacking microchips. The precise alignment led to a liquid thickness of 125.6 nm close to the edge of the viewing area. The performance of our LC was demonstrated by in situ transmission electron microscopy imaging of the dynamic motions of 2-nm Pt particles. This versatile and cost-effective microchip production method can be used to fabricate other types of microchips for in situ electron microscopy.


Author(s):  
Chunlang Gao ◽  
Chunqiang Zhuang ◽  
Yuanli Li ◽  
Heyang Qi ◽  
Ge Chen ◽  
...  

In this study, we employed in-situ liquid cell transmission electron microscopy (LC-TEM) to carry out the new design strategy of precisely regulating the microstructure of large-sized cocatalysts for highly efficient...


2015 ◽  
Vol 27 (23) ◽  
pp. 8146-8152 ◽  
Author(s):  
Wen-I Liang ◽  
Xiaowei Zhang ◽  
Karen Bustillo ◽  
Chung-Hua Chiu ◽  
Wen-Wei Wu ◽  
...  

Nanoscale ◽  
2019 ◽  
Vol 11 (27) ◽  
pp. 13098-13107 ◽  
Author(s):  
Ryan Hufschmid ◽  
Eric Teeman ◽  
B. Layla Mehdi ◽  
Kannan M. Krishnan ◽  
Nigel D. Browning

Iron oxide nanoparticle surface chemistry controls growth and dissolution, which are observed in real-time usingin situliquid cell Scanning Transmission Electron Microscopy (STEM).


2019 ◽  
Vol 55 (7) ◽  
pp. 2815-2825 ◽  
Author(s):  
M. S. A. Asghar ◽  
B. J. Inkson ◽  
G. Möbus

Abstract Deliberate electron irradiation of cerium oxide nanoparticles in water is used to trigger chemical reactions in a liquid cell transmission electron microscope. Formation of nanorods and nanoneedles is observed starting from predominantly octahedral shape nanoparticles. Detailed morphologies found include free-standing needles, needles connected to specific octahedral ceria facets and star-shaped multi-needle patterns. It is found that rod-axis orientations and crystallographic directions are aligned. It is suggested that high ion and radical concentration of radiolysed water dissolves layers of the original CeO2 particles which re-arrange as needles in the direction of energetically preferred facets.


Sign in / Sign up

Export Citation Format

Share Document