scholarly journals Automated Crystal Orientation Mapping by Precession Electron Diffraction-Assisted Four-Dimensional Scanning Transmission Electron Microscopy Using a Scintillator-Based CMOS Detector

2021 ◽  
Vol 27 (5) ◽  
pp. 1102-1112
Author(s):  
Jiwon Jeong ◽  
Niels Cautaerts ◽  
Gerhard Dehm ◽  
Christian H. Liebscher

The recent development of electron-sensitive and pixelated detectors has attracted the use of four-dimensional scanning transmission electron microscopy (4D-STEM). Here, we present a precession electron diffraction-assisted 4D-STEM technique for automated orientation mapping using diffraction spot patterns directly captured by an in-column scintillator-based complementary metal-oxide-semiconductor (CMOS) detector. We compare the results to a conventional approach, which utilizes a fluorescent screen filmed by an external charge charge-coupled device camera. The high-dynamic range and signal-to-noise characteristics of the detector greatly improve the image quality of the diffraction patterns, especially the visibility of diffraction spots at high scattering angles. In the orientation maps reconstructed via the template matching process, the CMOS data yield a significant reduction of false indexing and higher reliability compared to the conventional approach. The angular resolution of misorientation measurement could also be improved by masking reflections close to the direct beam. This is because the orientation sensitive, weak, and small diffraction spots at high scattering angles are more significant. The results show that fine details, such as nanograins, nanotwins, and sub-grain boundaries, can be resolved with a sub-degree angular resolution which is comparable to orientation mapping using Kikuchi diffraction patterns.

2011 ◽  
Vol 17 (S2) ◽  
pp. 1078-1079
Author(s):  
A Shah ◽  
B Nelson-Cheeseman ◽  
A Bhattacharya ◽  
J-M Zuo ◽  
J Spence

Extended abstract of a paper presented at Microscopy and Microanalysis 2011 in Nashville, Tennessee, USA, August 7–August 11, 2011.


2016 ◽  
Vol 61 (3) ◽  
pp. 1575-1580
Author(s):  
B. Leszczyńska-Madej ◽  
M. W. Richert ◽  
I. Nejman ◽  
P. Zawadzka

AbstractThe present study attempts to apply HE to 99.99% pure copper. The microstructure of the samples was investigated by both light microscopy and scanning transmission electron microscopy (STEM). Additionally, the microhardness was measured, the tensile test was made, and statistical analysis of the grains and subgrains was performed. Based on Kikuchi diffraction patterns, misorientation was determined. The obtained results show that microstructure of copper deformed by hydrostatic extrusion (HE) is rather inhomogeneous. The regions strongly deformed with high dislocation density exist near cells and grains/subgrains free of dislocations. The measurements of the grain size have revealed that the sample with an initial in annealed-state grain size of about 250 μm had this grain size reduced to below 0.35μm when it was deformed by HE to the strain ε=2.91. The microhardness and UTS are stable within the whole investigated range of deformation.


1998 ◽  
Vol 523 ◽  
Author(s):  
A. F. Myers ◽  
E. B. Steel ◽  
L. M. Struck ◽  
H. I. Liu ◽  
J. A. Burns

AbstractTitanium silicide films grown on silicon were analyzed by transmission electron microscopy (TEM), electron diffraction, scanning transmission electron microscopy (STEM), and energy dispersive x-ray spectroscopy. The films were prepared by sequential rapid thermal annealing (RTA) at 675 °C and 850 °C of 16-nm-thick sputtered Ti on Si (001) wafers. In some cases, a 20-nm-thick TiN capping layer was deposited on the Ti film before the RTA procedure and was removed after annealing. TEM and STEM analyses showed that the silicide films were less than 0.1 μm thick; the capped film was more uniform, ranging in thickness from ∼ 25 – 45 nm, while the uncapped film ranged in thickness from ∼ 15 – 75 nm. Electron diffraction was used to determine that the capped film contained C54-TiSi2, C49-TiSi2, Ti5Si3, and possibly TiSi, and that the uncapped film contained C49-TiSi2, TiSi, Ti5Si3, unreacted Ti, and possibly C54-TiSi2.


2010 ◽  
Vol 16 (5) ◽  
pp. 614-621 ◽  
Author(s):  
K.J. Ganesh ◽  
M. Kawasaki ◽  
J.P. Zhou ◽  
P.J. Ferreira

AbstractAn electron diffraction technique called D-STEM has been developed in a transmission electron microscopy/scanning transmission electron microscopy (TEM/STEM) instrument to obtain spot electron diffraction patterns from nanostructures, as small as ∼3 nm. The electron ray path achieved by configuring the pre- and postspecimen illumination lenses enables the formation of a 1–2 nm near-parallel probe, which is used to obtain bright-field/dark-field STEM images. Under these conditions, the beam can be controlled and accurately positioned on the STEM image, at the nanostructure of interest, while sharp spot diffraction patterns can be simultaneously recorded on the charge-coupled device camera. When integrated with softwares such as GatanTMSTEM diffraction imaging and Automated Crystallography for TEM or DigistarTM, NanoMEGAS, the D-STEM technique is very powerful for obtaining automated orientation and phase maps based on diffraction information acquired on a pixel by pixel basis. The versatility of the D-STEM technique is demonstrated by applying this technique to nanoparticles, nanowires, and nano interconnect structures.


Author(s):  
J. M. Cowley

The comparison of scanning transmission electron microscopy (STEM) with conventional transmission electron microscopy (CTEM) can best be made by means of the Reciprocity Theorem of wave optics. In Fig. 1 the intensity measured at a point A’ in the CTEM image due to emission from a point B’ in the electron source is equated to the intensity at a point of the detector, B, due to emission from a point A In the source In the STEM. On this basis it can be demonstrated that contrast effects In the two types of instrument will be similar. The reciprocity relationship can be carried further to include the Instrument design and experimental procedures required to obtain particular types of information. For any. mode of operation providing particular information with one type of microscope, the analagous type of operation giving the same information can be postulated for the other type of microscope. Then the choice between the two types of instrument depends on the practical convenience for obtaining the required Information.


Sign in / Sign up

Export Citation Format

Share Document