precession electron diffraction
Recently Published Documents


TOTAL DOCUMENTS

243
(FIVE YEARS 52)

H-INDEX

25
(FIVE YEARS 4)

Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5022
Author(s):  
Fei Gao ◽  
Zilong Gao ◽  
Qiyong Zhu ◽  
Zhenyu Liu

The deformation behavior for highly purified Fe-17Cr alloy was investigated at 700~1000 °C and 0.5~10 s−1. The microstructure evolution and corresponding mechanism during deformation were studied in-depth, using electron backscattering diffraction, transmission electron microscopy and precession electron diffraction. During deformation, dynamic recrystallization (DRX) occurred, along with extensive dynamic recovery, and the active DRX mechanism depended on deformation conditions. At higher Zener-Hollomon parameter (Z ≥ 5.93 × 1027 s−1), the development of the shear band was promoted, and then continuous DRX was induced by the formation and intersection shear band. At lower Zener-Hollomon parameter (Z ≤ 3.10 × 1025 s−1), the nucleation of the new grain was attributed to the combination of continuous DRX by uniform increase in misorientation between subgrains and discontinuous DRX by grain boundary bulging, and with increasing temperature, the effect of the former became weaker, whereas the effect of the latter became stronger. The DRX grain size increased with the temperature. For alleviating ridging, it seems advantageous to activate the continuous DRX induced by shear band through hot deformation with higher Z. In addition, the modified Johnson-Cook and Arrhenius-type models by conventional way were developed, and the modified Johnson-Cook model was developed, using the proposed way, by considering strain dependency of the material parameters. The Arrhenius-type model was also modified by using the proposed way, through distinguishing stress levels for acquiring partial parameter and through employing peak stress to determine the activation energy and considering strain dependency of only other parameters for compensating strain. According to our comparative analyses, the modified Arrhenius-type model by the proposed approach, which is suggested to model hot-deformation behavior for metals having only ferrite, could offer a more accurate prediction of flow behavior as compared to other developed models.


2021 ◽  
Vol 27 (5) ◽  
pp. 1102-1112
Author(s):  
Jiwon Jeong ◽  
Niels Cautaerts ◽  
Gerhard Dehm ◽  
Christian H. Liebscher

The recent development of electron-sensitive and pixelated detectors has attracted the use of four-dimensional scanning transmission electron microscopy (4D-STEM). Here, we present a precession electron diffraction-assisted 4D-STEM technique for automated orientation mapping using diffraction spot patterns directly captured by an in-column scintillator-based complementary metal-oxide-semiconductor (CMOS) detector. We compare the results to a conventional approach, which utilizes a fluorescent screen filmed by an external charge charge-coupled device camera. The high-dynamic range and signal-to-noise characteristics of the detector greatly improve the image quality of the diffraction patterns, especially the visibility of diffraction spots at high scattering angles. In the orientation maps reconstructed via the template matching process, the CMOS data yield a significant reduction of false indexing and higher reliability compared to the conventional approach. The angular resolution of misorientation measurement could also be improved by masking reflections close to the direct beam. This is because the orientation sensitive, weak, and small diffraction spots at high scattering angles are more significant. The results show that fine details, such as nanograins, nanotwins, and sub-grain boundaries, can be resolved with a sub-degree angular resolution which is comparable to orientation mapping using Kikuchi diffraction patterns.


2021 ◽  
Vol 27 (S1) ◽  
pp. 2494-2495
Author(s):  
Patrick Harrison ◽  
Xuyang Zhou ◽  
Saurabh Mohan Das ◽  
Nicola Viganò ◽  
Pierre Lhuissier ◽  
...  

2021 ◽  
Author(s):  
Xavier Pasala ◽  
Nikhil Pokharel ◽  
Phil Ahrenkiel ◽  
Kirstin Alberi ◽  
Kamran Forghani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document