Measuring System Calibration Factors by Unmixing the Excitation–Emission Spectra of One Dish of Cells

2021 ◽  
pp. 1-8
Author(s):  
Han Sun ◽  
Ao Yin ◽  
Lu Gao ◽  
Hongce Chen ◽  
Qilin Tang ◽  
...  

Accurate predetermination of the quantum yield ratio (QA/QD) and the extinction coefficient ratio (KA/KD) between acceptor and donor is a prerequisite for quantitative fluorescence resonance energy transfer (FRET) imaging. We here propose a method to measure KA/KD and QA/QD by measuring the excitation–emission spectra (ExEm-spectra) of one dish of cells expressing m (≥3) kinds of FRET constructs. The ExEm-spectra images are unmixed to obtain the weight maps of donor (WD), acceptor (WA), and acceptor sensitization (WS). For each cell, the frequency distribution plots of the WS/WD and WS/WA images are fitted by using a single-Gaussian function to obtain the peak values of WS/WD (SD) and WS/WA (SA). The statistical frequency-SD/SA plots from all cells are fitted by using a multi-Gaussian function to obtain the peak values of both SD and SA, and then the ranges of WS/WD (RSD) and WS/WA (RSA) for each FRET construct are predetermined. Based on the predetermined RSD and RSA values of FRET constructs, our method is capable of automatically classifying cells expressing different FRET constructs. Finally, the WS/WD–WA/WD plot from different kinds of cells is linearly fitted to obtain KA/KD and QA/QD values.

2008 ◽  
Vol 610 (1) ◽  
pp. 68-73 ◽  
Author(s):  
Hai-Qiao Wang ◽  
Yong-Qiang Li ◽  
Jian-Hao Wang ◽  
Qiao Xu ◽  
Xiu-Qing Li ◽  
...  

RSC Advances ◽  
2014 ◽  
Vol 4 (54) ◽  
pp. 28471-28480 ◽  
Author(s):  
Atiya N. Jordan ◽  
Noureen Siraj ◽  
Susmita Das ◽  
Isiah M. Warner

Mixtures of GUMBOS were used to form binary nanomaterials with tunable emission spectra due to Förster resonance energy transfer (FRET).


2020 ◽  
Vol 6 (21) ◽  
pp. eaaz8400 ◽  
Author(s):  
Jueun Jeon ◽  
Dong Gil You ◽  
Wooram Um ◽  
Jeongjin Lee ◽  
Chan Ho Kim ◽  
...  

Chemiluminescence (CL) has recently gained attention for CL resonance energy transfer (CRET)–mediated photodynamic therapy of cancer. However, the short duration of the CL signal and low quantum yield of the photosensitizer have limited its translational applications. Here, we report CRET-based nanoparticles (CRET-NPs) to achieve quantum yield–enhanced cancer phototheranostics by reinterpreting the hidden nature of CRET. Owing to reactive oxygen species (ROS)–responsive CO2 generation, CRET-NPs were capable of generating a strong and long-lasting photoacoustic signal in the tumor tissue via thermal expansion–induced vaporization. In addition, the CRET phenomenon of the NPs enhanced ROS quantum yield of photosensitizer through both electron transfer for an oxygen-independent type I photochemical reaction and self-illumination for an oxygen-dependent type II photochemical reaction. Consequently, owing to their high ROS quantum yield, CRET-NPs effectively inhibited tumor growth with complete tumor growth inhibition in 60% of cases, even with a single treatment.


Sign in / Sign up

Export Citation Format

Share Document