quantitative fluorescence
Recently Published Documents


TOTAL DOCUMENTS

513
(FIVE YEARS 90)

H-INDEX

50
(FIVE YEARS 6)

2021 ◽  
Author(s):  
N. Amy Yewdall ◽  
Alain A. M. André ◽  
Merlijn H. I. van Haren ◽  
Frank H. T. Nelissen ◽  
Aafke Jonker ◽  
...  

Nucleoli have viscoelastic gel-like condensate dynamics that are not well represented in vitro. Nucleoli models, such as those formed by nucleophosmin 1 (NPM1) and ribosomal RNA (rRNA), exhibit condensate dynamics orders of magnitude faster than in vivo nucleoli. Here we show that an interplay between magnesium ions (Mg2+) and ATP governs rRNA dynamics, and this ultimately shapes the physical state of these condensates. Using quantitative fluorescence microscopy, we demonstrate that increased RNA compaction occurs in the condensates at high Mg2+ concentrations, contributing to the slowed RNA dynamics. At Mg2+ concentrations above 7 mM, rRNA is fully arrested and the condensates are gels. Below the critical gel point, NPM1-rRNA droplets age in a temperature-dependent manner, suggesting that condensates are viscoelastic materials, undergoing maturation driven by weak multivalent interactions. ATP addition reverses the dynamic arrest of rRNA, resulting in liquefaction of these gel-like structures. Surprisingly, ATP and Mg2+ both act to increase partitioning of NPM1-proteins as well as rRNA, which influences the partitioning of small client molecules. By contrast, larger ribosomes form a halo around NPM1-rRNA coacervates when Mg2+ concentrations are higher than ATP concentrations. Within cells, ATP levels fluctuate due to biomolecular reactions, and we demonstrate that a dissipative enzymatic reaction can control the biophysical properties of in vitro condensates through depletion of ATP. This enzymatic ATP depletion also reverses the formation of the ribosome halos. Our results illustrate how cells, by changing local ATP concentrations, may regulate the state and client partitioning of RNA-containing condensates such as the nucleolus.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Ming-Zhang Xie ◽  
Chun Guo ◽  
Jia-Qi Dong ◽  
Jie Zhang ◽  
Ke-Tao Sun ◽  
...  

Abstract Background Exposure to glyoxal, the smallest dialdehyde, is associated with several diseases; humans are routinely exposed to glyoxal because of its ubiquitous presence in foods and the environment. The aim of this study was to examine the damage caused by glyoxal in human aortic endothelial cells. Methods Cell survival assays and quantitative fluorescence assays were performed to measure DNA damage; oxidative stress was detected by colorimetric assays and quantitative fluorescence, and the mitogen-activated protein kinase pathways were assessed using western blotting. Results Exposure to glyoxal was found to be linked to abnormal glutathione activity, the collapse of mitochondrial membrane potential, and the activation of mitogen-activated protein kinase pathways. However, DNA damage and thioredoxin oxidation were not induced by dialdehydes. Conclusions Intracellular glutathione, members of the mitogen-activated protein kinase pathways, and the mitochondrial membrane potential are all critical targets of glyoxal. These findings provide novel insights into the molecular mechanisms perturbed by glyoxal, and may facilitate the development of new therapeutics and diagnostic markers for cardiovascular diseases.


2021 ◽  
Author(s):  
Philipp Radler ◽  
Natalia Baranova ◽  
Paulo Caldas ◽  
Christoph Sommer ◽  
Mar López-Pelegrín ◽  
...  

Bacterial cell division is coordinated by the Z-ring, a cytoskeletal structure of treadmilling filaments of FtsZ and their membrane anchors, FtsA and ZipA. For divisome maturation and initiation of constriction, the widely conserved actin-homolog FtsA plays a central role, as it links downstream cell division proteins in the membrane to the Z-ring in the cytoplasm. According to the current model, FtsA initiates cell constriction by switching from an inactive polymeric conformation to an active monomeric form, which then stabilizes the Z-ring and recruits downstream proteins such as FtsN. However, direct biochemical evidence for this mechanism is missing so far. Here, we used biochemical reconstitution experiments in combination with quantitative fluorescence microscopy to study the mechanism of divisome activation in vitro. By comparing the properties of wildtype FtsA and FtsA R286W, a gain-of-function mutant thought to mimic its active state, we found that active FtsA outperforms the wildtype protein in replicating FtsZ treadmilling dynamics, filament stabilization and FtsN recruitment. We could attribute these differences to a faster membrane exchange of FtsA R286W as well as its higher packing density below FtsZ filaments. Using FRET microscopy, we also show that binding of FtsN does not compete with, but promotes FtsA self-interaction. Together, our findings shed new light on the assembly and activation of the bacterial cell division machinery and the mechanism of how FtsA initiates cell constriction.


2021 ◽  
pp. 1-8
Author(s):  
Han Sun ◽  
Ao Yin ◽  
Lu Gao ◽  
Hongce Chen ◽  
Qilin Tang ◽  
...  

Accurate predetermination of the quantum yield ratio (QA/QD) and the extinction coefficient ratio (KA/KD) between acceptor and donor is a prerequisite for quantitative fluorescence resonance energy transfer (FRET) imaging. We here propose a method to measure KA/KD and QA/QD by measuring the excitation–emission spectra (ExEm-spectra) of one dish of cells expressing m (≥3) kinds of FRET constructs. The ExEm-spectra images are unmixed to obtain the weight maps of donor (WD), acceptor (WA), and acceptor sensitization (WS). For each cell, the frequency distribution plots of the WS/WD and WS/WA images are fitted by using a single-Gaussian function to obtain the peak values of WS/WD (SD) and WS/WA (SA). The statistical frequency-SD/SA plots from all cells are fitted by using a multi-Gaussian function to obtain the peak values of both SD and SA, and then the ranges of WS/WD (RSD) and WS/WA (RSA) for each FRET construct are predetermined. Based on the predetermined RSD and RSA values of FRET constructs, our method is capable of automatically classifying cells expressing different FRET constructs. Finally, the WS/WD–WA/WD plot from different kinds of cells is linearly fitted to obtain KA/KD and QA/QD values.


2021 ◽  
Vol 22 (19) ◽  
pp. 10876
Author(s):  
Escarlata Fernández-Puente ◽  
Jesús Palomero

Reactive oxygen and nitrogen species (RONS) play an important role in the pathophysiology of skeletal muscle and are involved in the regulation of intracellular signaling pathways, which drive metabolism, regeneration, and adaptation in skeletal muscle. However, the molecular mechanisms underlying these processes are unknown or partially uncovered. We implemented a combination of methodological approaches that are funded for the use of genetically encoded biosensors associated with quantitative fluorescence microscopy imaging to study redox biology in skeletal muscle. Therefore, it was possible to detect and monitor RONS and glutathione redox potential with high specificity and spatio-temporal resolution in two models, isolated skeletal muscle fibers and C2C12 myoblasts/myotubes. Biosensors HyPer3 and roGFP2-Orp1 were examined for the detection of cytosolic hydrogen peroxide; HyPer-mito and HyPer-nuc for the detection of mitochondrial and nuclear hydrogen peroxide; Mito-Grx1-roGFP2 and cyto-Grx1-roGFP2 were used for registration of the glutathione redox potential in mitochondria and cytosol. G-geNOp was proven to detect cytosolic nitric oxide. The fluorescence emitted by the biosensors is affected by pH, and this might have masked the results; therefore, environmental CO2 must be controlled to avoid pH fluctuations. In conclusion, genetically encoded biosensors and quantitative fluorescence microscopy provide a robust methodology to investigate the pathophysiological processes associated with the redox biology of skeletal muscle.


2021 ◽  
Author(s):  
Eva Estebanez-Perpiña ◽  
Alba Jimenez-Panizo ◽  
Andrea Alegre-Marti ◽  
Gregory Fettweis ◽  
Montserrat Abella ◽  
...  

The glucocorticoid receptor (GR) is a ubiquitously expressed transcription factor that controls metabolic and homeostatic processes essential for life. Although numerous crystal structures of the GR ligand-binding domain (GR-LBD) have been reported, the functional oligomeric state of the full-length receptor, which is essential for its transcriptional activity, remains disputed. Here we present five new crystal structures of agonist-bound GR-LBD, along with a thorough analysis of previous structural work. Biologically relevant homodimers were identified by studying a battery of GR point mutants including crosslinking assays in solution and quantitative fluorescence microscopy in living cells. Our results highlight the relevance of non-canonical dimerization modes for GR, especially of contacts made by loop L1-3 residues such as Tyr545. Our work unveils likely pathophysiologically relevant quaternary assemblies of the nuclear receptor with important implications for glucocorticoid action and drug design.


Author(s):  
Kristine Bach Korsholm Knudsen ◽  
Nikolaj Nerup ◽  
Joergen Thorup ◽  
Thomas Thymann ◽  
Per Torp Sangild ◽  
...  

2021 ◽  
Author(s):  
Daniel Wirth ◽  
Ece Özdemir ◽  
Christopher King ◽  
Lena Ahlswede ◽  
Dirk Schneider ◽  
...  

The spatial distribution of proteins in cell membranes is crucial for signal transduction, cell communication and membrane trafficking. Members of the Tetraspanin family organize functional protein clusters within the plasma membrane into so-called Tetraspanin-enriched microdomains (TEMs). Direct interactions between Tetraspanins are believed to be important for this organization. However, studies thus far have utilized mainly co-immunoprecipitation methods that cannot distinguish between direct and indirect, through common partners, interactions. Here we study Tetraspanin 8 homointeractions in living cells via quantitative fluorescence microscopy. We demonstrate that Tetraspanin 8 exists in a monomer-dimer equilibrium in the plasma membrane. Tetraspanin 8 dimerization is described by a high dissociation constant (Kd = 14700 ± 1100 Tspan/μm2), one of the highest dissociation constants measured for membrane proteins in live cells. We propose that this high dissociation constant, and thus the short lifetime of the Tetraspanin 8 dimer, is critical for Tetraspanin 8 functioning as a master regulator of cell signaling.


2021 ◽  
Vol 118 (37) ◽  
pp. e2106197118
Author(s):  
James S. New ◽  
Bahar Kazemi ◽  
Vassilia Spathis ◽  
Mark C. Price ◽  
Richard A. Mathies ◽  
...  

Enceladus, an icy moon of Saturn, is a compelling destination for a probe seeking biosignatures of extraterrestrial life because its subsurface ocean exhibits significant organic chemistry that is directly accessible by sampling cryovolcanic plumes. State-of-the-art organic chemical analysis instruments can perform valuable science measurements at Enceladus provided they receive sufficient plume material in a fly-by or orbiter plume transit. To explore the feasibility of plume sampling, we performed light gas gun experiments impacting micrometer-sized ice particles containing a fluorescent dye biosignature simulant into a variety of soft metal capture surfaces at velocities from 800 m ⋅ s−1 up to 3 km ⋅ s−1. Quantitative fluorescence microscopy of the capture surfaces demonstrates organic capture efficiencies of up to 80 to 90% for isolated impact craters and of at least 17% on average on indium and aluminum capture surfaces at velocities up to 2.2 km ⋅ s−1. Our results reveal the relationships between impact velocity, particle size, capture surface, and capture efficiency for a variety of possible plume transit scenarios. Combined with sensitive microfluidic chemical analysis instruments, we predict that our capture system can be used to detect organic molecules in Enceladus plume ice at the 1 nM level—a sensitivity thought to be meaningful and informative for probing habitability and biosignatures.


Sign in / Sign up

Export Citation Format

Share Document