scholarly journals Plane poloidal-toroidal decomposition of doubly periodic vector fields. Part 2. The Stokes equations

2005 ◽  
Vol 47 (1) ◽  
pp. 39-50 ◽  
Author(s):  
G. D. McBain

AbstractWe continue our study of the adaptation from spherical to doubly periodic slot domains of the poloidal-toroidal representation of vector fields. Building on the successful construction of an orthogonal quinquepartite decomposition of doubly periodic vector fields of arbitrary divergence with integral representations for the projections of known vector fields and equivalent scalar representations for unknown vector fields (Part 1), we now present a decomposition of vector field equations into an equivalent set of scalar field equations. The Stokes equations for slow viscous incompressible fluid flow in an arbitrary force field are treated as an example, and for them the application of the decomposition uncouples the conservation of momentum equation from the conservation of mass constraint. The resulting scalar equations are then solved by elementary methods. The extension to generalised Stokes equations resulting from the application of various time discretisation schemes to the Navier-Stokes equations is also solved.

2010 ◽  
Vol 132 (10) ◽  
Author(s):  
Minoru Watari

Relationship between accuracy and number of velocity particles in velocity slip phenomena was investigated by numerical simulations and theoretical considerations. Two types of 2D models were used: the octagon family and the D2Q9 model. Models have to possess the following four prerequisites to accurately simulate the velocity slip phenomena: (a) equivalency to the Navier–Stokes equations in the N-S flow area, (b) conservation of momentum flow Pxy in the whole area, (c) appropriate relaxation process in the Knudsen layer, and (d) capability to properly express the mass and momentum flows on the wall. Both the octagon family and the D2Q9 model satisfy conditions (a) and (b). However, models with fewer velocity particles do not sufficiently satisfy conditions (c) and (d). The D2Q9 model fails to represent a relaxation process in the Knudsen layer and shows a considerable fluctuation in the velocity slip due to the model’s angle to the wall. To perform an accurate velocity slip simulation, models with sufficient velocity particles, such as the triple octagon model with moving particles of 24 directions, are desirable.


Author(s):  
Jean-Yves Chemin ◽  
Benoit Desjardins ◽  
Isabelle Gallagher ◽  
Emmanuel Grenier

Before introducing the concept of Leray’s weak solutions to the incompressible Navier–Stokes equations, classical definitions of Sobolev spaces are required. In particular, when it comes to the analysis of the Stokes operator, suitable functional spaces of incompressible vector fields have to be defined. Several issues regarding the associated dual spaces, embedding properties, and the mathematical way of considering the pressure field are also discussed. Let us first recall the definition of some functional spaces that we shall use throughout this book. In the framework of weak solutions of the Navier– Stokes equations, incompressible vector fields with finite viscous dissipation and the no-slip property on the boundary are considered. Such H1-type spaces of incompressible vector fields, and the corresponding dual spaces, are important ingredients in the analysis of the Stokes operator.


2011 ◽  
Vol 20 (14) ◽  
pp. 2817-2822 ◽  
Author(s):  
T. PADMANABHAN

There is considerable evidence to suggest that field equations of gravity have the same conceptual status as the equations of hydrodynamics or elasticity. We add further support to this paradigm by showing that Einstein"s field equations are identical in form to Navier–Stokes equations of hydrodynamics, when projected on to any null surface. In fact, these equations can be obtained directly by extremizing of entropy associated with the deformations of null surfaces thereby providing a completely thermodynamic route to gravitational field equations. Several curious features of this remarkable connection (including a phenomenon of "dissipation without dissipation") are described and the implications for the emergent paradigm of gravity is highlighted.


2017 ◽  
Vol 24 (4) ◽  
pp. 751-762 ◽  
Author(s):  
Vladimir Maderich ◽  
Kyung Tae Jung ◽  
Kateryna Terletska ◽  
Kyeong Ok Kim

Abstract. The dynamics and energetics of a head-on collision of internal solitary waves (ISWs) with trapped cores propagating in a thin pycnocline were studied numerically within the framework of the Navier–Stokes equations for a stratified fluid. The peculiarity of this collision is that it involves trapped masses of a fluid. The interaction of ISWs differs for three classes of ISWs: (i) weakly non-linear waves without trapped cores, (ii) stable strongly non-linear waves with trapped cores, and (iii) shear unstable strongly non-linear waves. The wave phase shift of the colliding waves with equal amplitude grows as the amplitudes increase for colliding waves of classes (i) and (ii) and remains almost constant for those of class (iii). The excess of the maximum run-up amplitude, normalized by the amplitude of the waves, over the sum of the amplitudes of the equal colliding waves increases almost linearly with increasing amplitude of the interacting waves belonging to classes (i) and (ii); however, it decreases somewhat for those of class (iii). The colliding waves of class (ii) lose fluid trapped by the wave cores when amplitudes normalized by the thickness of the pycnocline are in the range of approximately between 1 and 1.75. The interacting stable waves of higher amplitude capture cores and carry trapped fluid in opposite directions with little mass loss. The collision of locally shear unstable waves of class (iii) is accompanied by the development of instability. The dependence of loss of energy on the wave amplitude is not monotonic. Initially, the energy loss due to the interaction increases as the wave amplitude increases. Then, the energy losses reach a maximum due to the loss of potential energy of the cores upon collision and then start to decrease. With further amplitude growth, collision is accompanied by the development of instability and an increase in the loss of energy. The collision process is modified for waves of different amplitudes because of the exchange of trapped fluid between colliding waves due to the conservation of momentum.


1985 ◽  
Vol 107 (1) ◽  
pp. 36-43 ◽  
Author(s):  
R. D. Grose

The theory for steady flow of an incompressible fluid through an orifice has been semi-empirically established for only certain flow conditions. In this paper, the development of a more rigorous theory for the prediction of the orifice flow contraction effect is presented. This theory is based on the conservation of momentum and mass principles applied to global control volumes for continuum flow. The control volumes are chosen to have a particular geometric construction which is based on certain characteristics of the Navier-Stokes equations for incompressible and, in the limit, inviscid flow. The treatment is restricted to steady incompressible, single phase, single component, inviscid Newtonian flow, but the principles that are developed hold for more general conditions. The resultant equations predict the orifice contraction coefficient as a function of the upstream geometry ratio for both axisymmetric and two-dimensional flow fields. The predicted contraction coefficient values agree with experimental orifice discharge coefficient data without the need for empirical adjustment.


2010 ◽  
Vol 65 (6-7) ◽  
pp. 504-510 ◽  
Author(s):  
Xiaorui Hua ◽  
Zhongzhou Dongb ◽  
Fei Huangc ◽  
Yong Chena

By means of the classical symmetry method, we investigate the (2+1)-dimensional Navier-Stokes equations. The symmetry group of Navier-Stokes equations is studied and its corresponding group invariant solutions are constructed. Ignoring the discussion of the infinite-dimensional subalgebra, we construct an optimal system of one-dimensional group invariant solutions. Furthermore, using the associated vector fields of the obtained symmetry, we give out the reductions by one-dimensional and two-dimensional subalgebras, and some explicit solutions of Navier-Stokes equations are obtained. For three interesting solutions, the figures are given out to show their properties: the solution of stationary wave of fluid (real part) appears as a balance between fluid advection (nonlinear term) and friction parameterized as a horizontal harmonic diffusion of momentum.


Sign in / Sign up

Export Citation Format

Share Document