scholarly journals An extension theorem for integral representations

Author(s):  
Wolfgang Knapp ◽  
Peter Schmid

AbstractBy a fundamental theorem of Brauer every irreducible character of a finite group G can be written in the field Q(εm) of mth roots of unity where m is the exponent of G. Is it always possible to find a matrix representation over its ring Z[εm] of integers? In the present paper it is shown that this holds true provided it is valid for the quasisimple groups. The reduction to such groups relies on a useful extension theorem for integral representations. Iwasawa theory on class groups of cyclotomic fields gives evidence that the answer is at least affirmative when the exponent is replaced by the order, and provides for a general qualitative result.

1969 ◽  
Vol 1 (2) ◽  
pp. 245-261 ◽  
Author(s):  
Raymond G. Ayoub ◽  
Christine Ayoub

The group ring of a finite abelian group G over the field of rational numbers Q and over the rational integers Z is studied. A new proof of the fact that the group ring QG is a direct sum of cyclotomic fields is given – without use of the Maschke and Wedderburn theorems; it is shown that the projections of QG onto these fields are determined by the inequivalent characters of G. It is proved that the group of units of ZG is a direct product of a finite group and a free abelian group F and the rank of F is determined. A formula for the orthogonal idempotents of QG is found.


1982 ◽  
Vol 85 ◽  
pp. 231-240 ◽  
Author(s):  
Shizuo Endo ◽  
Takehiko Miyata

Let Π be a finite group and denote by MΠ the class of finitely generated Z-free ZΠ-modules. In [2] we defined a certain equivalence relation on MΠ and constructed the abelian semigroup T(Π), which was studied in [3] (see [1] and [5], too).


1972 ◽  
Vol 13 (1) ◽  
pp. 76-90 ◽  
Author(s):  
Fiona M. Ross

We suppose throughout that G is a finite group with a faithful matrix representation X over the complex field. We suppose that X affords a character π of degree r whose values are rational (hence rational integers). If the matrices in some representation of G affording a character π0 are all permutation matrices, then π0 is called a permutation character. Permutation characters have non-negative integral values. In the general case, we consider what properties of permutation characters are true of π, and in particular, under what circumstances π is a permutation character. Note that assuming X to b faithful is equivalent to considering the image group X(G) instead of G.


1963 ◽  
Vol 15 ◽  
pp. 605-612 ◽  
Author(s):  
B. Banaschewski

The characters of the representations of a finite group G over a field K of characteristic zero generate a ring oK(G) of functions on G, the K-character ring of G, which is readily seen to be Zϕ1 + . . . + Zϕn, where Z is the ring of rational integers and ϕ1, . . . , ϕn are the characters of the different irreducible representations of G over K. The theorem that every irreducible representation of G over an algebraically closed field Ω of characteristic zero is equivalent to a representation of G over the subfield of Ω which is generated by the g0th roots of unity (g0 the exponent of G) was proved by Brauer (4) via the theorems that(1) OΩ(G) is additively generated by the induced characters of representations of elementary subgroups of G, and(2) the irreducible representations over 12 of any elementary group are induced by one-dimensional subgroup representations (3).


1963 ◽  
Vol 15 ◽  
pp. 625-630 ◽  
Author(s):  
Alfredo Jones

Let G be a finite group and R a Dedekind domain with quotient field K. We denote by RG the group ring of formal linear combinations of elements of G with coefficients in R. By an RG-module we understand a unital left RG-module which is finitely generated and torsion-free as R-module. In particular, if R is a principal ideal domain this is equivalent to considering representations of G by matrices with entries in R.


2018 ◽  
Vol 168 (1) ◽  
pp. 75-117 ◽  
Author(s):  
ALEX TORZEWSKI

AbstractLet G be a finite group and p be a prime. We investigate isomorphism invariants of $\mathbb{Z}_p$[G]-lattices whose extension of scalars to $\mathbb{Q}_p$ is self-dual, called regulator constants. These were originally introduced by Dokchitser–Dokchitser in the context of elliptic curves. Regulator constants canonically yield a pairing between the space of Brauer relations for G and the subspace of the representation ring for which regulator constants are defined. For all G, we show that this pairing is never identically zero. For formal reasons, this pairing will, in general, have non-trivial kernel. But, if G has cyclic Sylow p-subgroups and we restrict to considering permutation lattices, then we show that the pairing is non-degenerate modulo the formal kernel. Using this we can show that, for certain groups, including dihedral groups of order 2p for p odd, the isomorphism class of any $\mathbb{Z}_p$[G]-lattice whose extension of scalars to $\mathbb{Q}_p$ is self-dual, is determined by its regulator constants, its extension of scalars to $\mathbb{Q}_p$, and a cohomological invariant of Yakovlev.


2016 ◽  
Vol 104 (1) ◽  
pp. 37-43
Author(s):  
MARK L. LEWIS

When $G$ is a finite solvable group, we prove that $|G|$ can be bounded by a function in the number of irreducible characters with values in fields where $\mathbb{Q}$ is extended by prime power roots of unity. This gives a character theory analog for solvable groups of a theorem of Héthelyi and Külshammer that bounds the order of a finite group in terms of the number of conjugacy classes of elements of prime power order. In particular, we obtain for solvable groups a generalization of Landau’s theorem.


1973 ◽  
Vol 25 (5) ◽  
pp. 1051-1059 ◽  
Author(s):  
G. de B. Robinson

In two preceding papers [2; 3] the author has studied the algebras of the irreducible representations λ and the classes Ci of a finite group G. Integral representations {λ} and {Ci} of these algebras are derivable from the appropriate multiplication tables [4]. It should be emphasized, however, that the symmetry properties of the two sets of structure constants are not the same, and this leads to somewhat greater complexity in the formulae relating to classes as compared to representations.


2018 ◽  
Vol 72 (3) ◽  
pp. 656-675
Author(s):  
Andreas Nickel

AbstractLet $p$ be a prime and let $G$ be a finite group. By a celebrated theorem of Swan, two finitely generated projective $\mathbb{Z}_{p}[G]$-modules $P$ and $P^{\prime }$ are isomorphic if and only if $\mathbb{Q}_{p}\otimes _{\mathbb{Z}_{p}}P$ and $\mathbb{Q}_{p}\otimes _{\mathbb{Z}_{p}}P^{\prime }$ are isomorphic as $\mathbb{Q}_{p}[G]$-modules. We prove an Iwasawa-theoretic analogue of this result and apply this to the Iwasawa theory of local and global fields. We thereby determine the structure of natural Iwasawa modules up to (pseudo-)isomorphism.


1990 ◽  
Vol 42 (4) ◽  
pp. 646-658 ◽  
Author(s):  
Victor Snaith

Let K be a number field and let OK denote the integers of K. The locally free class groups, Cl(OK[G]), furnish a fundamental collection of invariants of a finite group, G. In this paper I will construct some new, non-trivial homomorphisms, called restricted determinants, which map the NGH-invariant idèlic units of Ok([Hab] to Cl(OK[G]). These homomorphisms are constructed by means of the Horn-description of Cl(OK[G]), which describes the locally free class group in terms of the representation theory of G, and the technique of Explicit Brauer Induction, which was introduced in [5].


Sign in / Sign up

Export Citation Format

Share Document