scholarly journals Transitivity in integral symplectic forms

1968 ◽  
Vol 8 (1) ◽  
pp. 43-48 ◽  
Author(s):  
D. G. James

A Symplectic lattice L is a free Z-module of finite rank endowed with a non-degenerate alternating bilinear form. Thus we have a bilinear mapping Φ of L × L into the domain of integers Z; we donote Φ (α, β) by α · β (where α, β ∈ L). Then α2 = 0 and α·β = −β·α.

2015 ◽  
Vol 23 (1) ◽  
pp. 29-49 ◽  
Author(s):  
Yuichi Futa ◽  
Hiroyuki Okazaki ◽  
Yasunari Shidama

Summary In this article, we formalize a matrix of ℤ-module and its properties. Specially, we formalize a matrix of a linear transformation of ℤ-module, a bilinear form and a matrix of the bilinear form (Gramian matrix). We formally prove that for a finite-rank free ℤ-module V, determinant of its Gramian matrix is constant regardless of selection of its basis. ℤ-module is necessary for lattice problems, LLL (Lenstra, Lenstra and Lovász) base reduction algorithm and cryptographic systems with lattices [22] and coding theory [14]. Some theorems in this article are described by translating theorems in [24], [26] and [19] into theorems of ℤ-module.


Author(s):  
Dusa McDuff ◽  
Dietmar Salamon

This chapter examines various ways to construct symplectic manifolds and submanifolds. It begins by studying blowing up and down in both the complex and the symplectic contexts. The next section is devoted to a discussion of fibre connected sums and describes Gompf’s construction of symplectic four-manifolds with arbitrary fundamental group. The chapter also contains an exposition of Gromov’s telescope construction, which shows that for open manifolds the h-principle rules and the inclusion of the space of symplectic forms into the space of nondegenerate 2-forms is a homotopy equivalence. The final section outlines Donaldson’s construction of codimension two symplectic submanifolds and explains the associated decompositions of the ambient manifold.


2013 ◽  
Vol 63 (4) ◽  
Author(s):  
Beata Rothkegel

AbstractIn the paper we formulate a criterion for the nonsingularity of a bilinear form on a direct sum of finitely many invertible ideals of a domain. We classify these forms up to isometry and, in the case of a Dedekind domain, up to similarity.


Author(s):  
Constanze Liaw ◽  
Sergei Treil ◽  
Alexander Volberg

Abstract The classical Aronszajn–Donoghue theorem states that for a rank-one perturbation of a self-adjoint operator (by a cyclic vector) the singular parts of the spectral measures of the original and perturbed operators are mutually singular. As simple direct sum type examples show, this result does not hold for finite rank perturbations. However, the set of exceptional perturbations is pretty small. Namely, for a family of rank $d$ perturbations $A_{\boldsymbol{\alpha }}:= A + {\textbf{B}} {\boldsymbol{\alpha }} {\textbf{B}}^*$, ${\textbf{B}}:{\mathbb C}^d\to{{\mathcal{H}}}$, with ${\operatorname{Ran}}{\textbf{B}}$ being cyclic for $A$, parametrized by $d\times d$ Hermitian matrices ${\boldsymbol{\alpha }}$, the singular parts of the spectral measures of $A$ and $A_{\boldsymbol{\alpha }}$ are mutually singular for all ${\boldsymbol{\alpha }}$ except for a small exceptional set $E$. It was shown earlier by the 1st two authors, see [4], that $E$ is a subset of measure zero of the space $\textbf{H}(d)$ of $d\times d$ Hermitian matrices. In this paper, we show that the set $E$ has small Hausdorff dimension, $\dim E \le \dim \textbf{H}(d)-1 = d^2-1$.


2021 ◽  
Vol 27 (2) ◽  
Author(s):  
Graham A. Niblo ◽  
Nick Wright ◽  
Jiawen Zhang

AbstractThis paper establishes a new combinatorial framework for the study of coarse median spaces, bridging the worlds of asymptotic geometry, algebra and combinatorics. We introduce a simple and entirely algebraic notion of coarse median algebra which simultaneously generalises the concepts of bounded geometry coarse median spaces and classical discrete median algebras. We study the coarse median universe from the perspective of intervals, with a particular focus on cardinality as a proxy for distance. In particular we prove that the metric on a quasi-geodesic coarse median space of bounded geometry can be constructed up to quasi-isometry using only the coarse median operator. Finally we develop a concept of rank for coarse median algebras in terms of the geometry of intervals and show that the notion of finite rank coarse median algebra provides a natural higher dimensional analogue of Gromov’s concept of $$\delta $$ δ -hyperbolicity.


2021 ◽  
Vol 111 (1) ◽  
Author(s):  
Graham Denham ◽  
Mathias Schulze ◽  
Uli Walther

AbstractConsider a linear realization of a matroid over a field. One associates with it a configuration polynomial and a symmetric bilinear form with linear homogeneous coefficients. The corresponding configuration hypersurface and its non-smooth locus support the respective first and second degeneracy scheme of the bilinear form. We show that these schemes are reduced and describe the effect of matroid connectivity: for (2-)connected matroids, the configuration hypersurface is integral, and the second degeneracy scheme is reduced Cohen–Macaulay of codimension 3. If the matroid is 3-connected, then also the second degeneracy scheme is integral. In the process, we describe the behavior of configuration polynomials, forms and schemes with respect to various matroid constructions.


2020 ◽  
Vol 32 (4) ◽  
pp. 995-1026
Author(s):  
Carme Cascante ◽  
Joaquín M. Ortega

AbstractIn this paper, we show that if {b\in L^{2}(\mathbb{R}^{n})}, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces {H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})}, {0<s<1}, by(f,g)\in H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})\to\int_{% \mathbb{R}^{n}}(\mathrm{Id}-\Delta)^{\frac{s}{2}}(fg)(\mathbf{x})b(\mathbf{x})% \mathop{}\!d\mathbf{x}is continuous if and only if the positive measure {\lvert b(\mathbf{x})\rvert^{2}\mathop{}\!d\mathbf{x}} is a trace measure for {H_{s}^{2}(\mathbb{R}^{n})}.


Author(s):  
Clément Luneau ◽  
Jean Barbier ◽  
Nicolas Macris

Abstract We consider a statistical model for finite-rank symmetric tensor factorization and prove a single-letter variational expression for its asymptotic mutual information when the tensor is of even order. The proof applies the adaptive interpolation method originally invented for rank-one factorization. Here we show how to extend the adaptive interpolation to finite-rank and even-order tensors. This requires new non-trivial ideas with respect to the current analysis in the literature. We also underline where the proof falls short when dealing with odd-order tensors.


Sign in / Sign up

Export Citation Format

Share Document