On Rotor calculus, II

1966 ◽  
Vol 6 (4) ◽  
pp. 424-448 ◽  
Author(s):  
H. A. Buchdahl

SummaryIn the development of the rotor calculus presented in a previous paper space-time was taken to be flat. This work is now extended to the case of curved space-times, which, in the first instance, is taken to be Riemannian. (The calculus bears at times a strong formal resemblance to the spinor analysis of Infeld and van der Waerden, but it is in fact developed quite independently of this.) Owing to the fact that all general relations had earlier already been written in a generally covariant form they may be taken over unchanged into the present context. In particular,now serves as a defining relation for the connecting quantities τAkl. A linear rotor connection is introduced, and the covariant derivative of a rotor defined. The covariant constancy of the τAkl establishes the relation between the linear connections in w-space and in r-space. A rotor curvature tensor is considered alongside a number of other curvature objects. Next, conformal transformations are dealt with, of which duality rotations may be considered as a special case. This leads naturally to a gauge-covariant generalization of the whole calculus. A so-called rotor-derivative is defined, and some general relations involving such derivatives investigated. The relation of the rotor curvature tensor to the spin-curvature tensor is touched upon, after which the introduction of “geodesic frames” is considered. After this general theory some points concerning the Maxwell field are dealt with, which is followed by some work concerning basic quadratic and cubic invariants. Finally, a certain basic symmetric rotor is re-considered in the context of the classification of Weyl tensors, and the idea of a canonical representation suggested.

1969 ◽  
Vol 10 (3-4) ◽  
pp. 497-498 ◽  
Author(s):  
Gilbert Baumslag

Let G be a group on two generators a and b subject to the single defining relation a = [a, ab]: . As usual [x, y] = x−1y−1xy and xy = y−1xy if x and y are elements of a group. The object of this note is to show that every finite quotient of G is cyclic. This implies that every normal subgroup of G contains the derived group G′. But by Magnus' theory of groups with a single defining relation G′ ≠ 1 ([1], §4.4). So G is not residually finite. This underlines the fact that groups with a single defining relation need not be residually finite (cf. [2]).


1953 ◽  
Vol 10 (1) ◽  
pp. 16-20 ◽  
Author(s):  
H. A. Buchdahl

Eddington has considered equations of the gravitational field in empty space which are of the fourth differential order, viz. the sets of equations which express the vanishing of the Hamiltonian derivatives of certain fundamental invariants. The author has shown that a wide class of such equations are satisfied by any solution of the equationswhere Gμν and gμν are the components of the Ricci tensor and the metrical tensor respectively, whilst λ is an arbitrary constant. For a V4 this applies in particular when the invariant referred to above is chosen from the setwhere Bμνσρ is the covariant curvature tensor. K3 has been included since, according to a result due to Lanczos3, its Hamiltonian derivative is a linear combination of and , i.e. of the Hamiltonian derivatives of K1 and K2. In fact


1968 ◽  
Vol 64 (2) ◽  
pp. 485-488 ◽  
Author(s):  
V. K. Rohatgi

Let {Xn: n ≥ 1} be a sequence of independent random variables and write Suppose that the random vairables Xn are uniformly bounded by a random variable X in the sense thatSet qn(x) = Pr(|Xn| > x) and q(x) = Pr(|Xn| > x). If qn ≤ q and E|X|r < ∞ with 0 < r < 2 then we have (see Loève(4), 242)where ak = 0, if 0 < r < 1, and = EXk if 1 ≤ r < 2 and ‘a.s.’ stands for almost sure convergence. the purpose of this paper is to study the rates of convergence ofto zero for arbitrary ε > 0. We shall extend to the present context, results of (3) where the case of identically distributed random variables was treated. The techniques used here are strongly related to those of (3).


1975 ◽  
Vol 20 (2) ◽  
pp. 129-141 ◽  
Author(s):  
D. Suryanarayana ◽  
R. Sita Rama Chandra Rao

Let k be a fixed integer ≧2. A positive integer n is called unitarily k-free, if the multiplicity of each prime divisor of n is not a multiple of k; or equivalently, if n is not divisible unitarily by the kth power of any integer > 1. By a unitary divisor, we mean as usual a divisor d > 0 of n such that (d,(n/d)) = 1. The integer 1 is also considered to be unitarily k-free. These integers were first defined by Cohen (1961; § 1). Let Q*k denote the set of unitarily k-free integers. When k = 2, the set Q*2 coincides with the set Q* of exponentially odd integers (that is, integers in whose canonical representation each exponent is odd) discussed by Cohen himself in an earlier paper (1961; § 1 and § 6). Let x denote a real variable 1 and let Q*k denote the number of unitarily k-free integers ≦ x. Cohen (1961; Theorem 3.2) established by purely elementary methods that , where , the product being extended over all primes p and ζ(k) denotes the Riemann Zeta function. In the same paper Cohen (1961; Theorem 4.2) improved the order estimate of the error term in (1.1) to O(x1/k), by making use of the properties of real Dirichiet series. Later, he (Cohen; 1964) proved the same result by purely elementary methods eliminating the use of Dirichlet series.


1964 ◽  
Vol 4 (1) ◽  
pp. 113-121 ◽  
Author(s):  
Bandana Gupta

This paper deals with a type of Remannian space Vn (n ≧ 2) for which the first covariant dervative of Weyl's projective curvature tensor is everywhere zero, that is where comma denotes covariant differentiation with respect to the metric tensor gij of Vn. Such a space has been called a projective-symmetric space by Gy. Soós [1]. We shall denote such an n-space by ψn. It will be proved in this paper that decomposable Projective-Symmetric spaces are symmetric in the sense of Cartan. In sections 3, 4 and 5 non-decomposable spaces of this kind will be considered in relation to other well-known classes of Riemannian spaces defined by curvature restrictions. In the last section the question of the existence of fields of concurrent directions in a ψ will be discussed.


1965 ◽  
Vol 14 (3) ◽  
pp. 243-244 ◽  
Author(s):  
R. H. Boyer

Kilmister (1) has considered dynamical systems specified by coordinates q( = 1, 2, , n) and a Lagrangian(with summation convention). He sought to determine generally covariant conditions for the existence of a first integral, , linear in the velocities. He showed that it is not, as is usually stated, necessary that there must exist an ignorable coordinate (equivalently, that b must be a Killing field:where covariant derivation is with respect to a). On the contrary, a singular integral, in the sense that for all time if satisfied initially, need not be accompanied by an ignorable coordinate.


1981 ◽  
Vol 33 (4) ◽  
pp. 915-928 ◽  
Author(s):  
Mizan Rahman

The problem of linearizing products of orthogonal polynomials, in general, and of ultraspherical and Jacobi polynomials, in particular, has been studied by several authors in recent years [1, 2, 9, 10, 13-16]. Standard defining relation [7, 18] for the Jacobi polynomials is given in terms of an ordinary hypergeometric function:with Re α > –1, Re β > –1, –1 ≦ x ≦ 1. However, for linearization problems the polynomials Rn(α,β)(x), normalized to unity at x = 1, are more convenient to use:(1.1)Roughly speaking, the linearization problem consists of finding the coefficients g(k, m, n; α,β) in the expansion(1.2)


1953 ◽  
Vol 5 ◽  
pp. 297-300 ◽  
Author(s):  
K. W. Lamson

Einstein, in his Generalized Theory of Gravitation [I], deals with a tensorwhose ninety-six independent components are complex-valued functions of four real variables xα. Schouten [4, p. 261 (89)] has decomposed the general relative tensor, antisymmetric in α, β, γ, and in ρ,σ, into five irreducible parts. This decomposition can be applied to the R of Einstein if we define the tensor v by


1969 ◽  
Vol 10 (1-2) ◽  
pp. 155-161 ◽  
Author(s):  
M. C. Chaki ◽  
A. N. Roy Chowdhury

In a recent paper [1] Adati and Miyazawa studied conformally recurrent spaces, that is, Riemannian spaces defined by where is the conformal curvature tensor: λi is a non-zero vector and comma denotes covariant differentiation with respect to the metric tensor gij.


1980 ◽  
Vol 17 (2) ◽  
pp. 448-455 ◽  
Author(s):  
M. Riedel

Let X(t) be a continuous, homogeneous stochastic process with independent increments characterized by a, σ, M, N in the Lévy representation formula. In this note we obtain the Lévy canonical representation of the characteristic function of a stochastic integral (in the sense of convergence in probability) of the form (where υ(t) is a non-decreasing, non-negative and left-continuous function) in terms of υ(t), a, σ, M, N.


Sign in / Sign up

Export Citation Format

Share Document