scholarly journals Some results on the asymptotic behavior of nonoscillatory solutions of differential equations with deviating arguments

Author(s):  
Ch. G. Philos ◽  
Y. G. Sficas ◽  
V. A. Staikos

AbstractThis paper deals with some asymptotic properties of nonoscillatory solutions of a class of n-th order (n < 1) differential equations with deviationg arguments involving the so called n-th order r-derivative of the unknown function x defined bywhere ri (i = 0,1…n) are positive continous functions on [t0, ∞). The fundamental purpose of this paper is to find for any integer m, 0 < m < n – 1, a necessary and sufficient condition (depending on m) in order that three exists at least one (nonoscillatory) solution x so that the exists in R – {0} The results obtained extend some recent ones due to Philos (1978a) and they prove, in a general setting, the validity of a conjecture made by Kusano and Onose (1975).

Author(s):  
Lu Wudu

AbstractConsider the nonlinear neutral equationwhere pi(t), hi(t), gj(t), Q(t) Є C[t0, ∞), limt→∞hi(t) = ∞, limt→∞gj(t) = ∞ i Є Im = {1, 2, …, m}, j Є In = {1, 2, …, n}. We obtain a necessary and sufficient condition (2) for this equation to have a nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorems 5 and 6) or to have a bounded nonoscillatory solution x(t) with limt→∞ inf|x(t)| > 0 (Theorem 7).


Author(s):  
S. J. Bilchev ◽  
M. K. Grammatikopoulos ◽  
I. P. Stavroulakis

AbstractConsider the nth-order neutral differential equation where n ≥ 1, δ = ±1, I, K are initial segments of natural numbers, pi, τi, σk ∈ R and qk ≥ 0 for i ∈ I and k ∈ K. Then a necessary and sufficient condition for the oscillation of all solutions of (E) is that its characteristic equation has no real roots. The method of proof has the advantage that it results in easily verifiable sufficient conditions (in terms of the coefficients and the arguments only) for the oscillation of all solutionso of Equation (E).


1986 ◽  
Vol 9 (4) ◽  
pp. 781-784 ◽  
Author(s):  
B. Smith

In this paper, asymptotic properties of solutions ofΔ3Vn+Pn−1Vn+1=0          (E+)are investigated via the quasi-adjoint equationΔ3Un+PnUn+2=0.             (E−)A necessary and sufficient condition for the existence of oscillatory solutions of(E+)is given. An example showing that it is possible for(E+)to have only nonoscillatory solutions is also given.


1990 ◽  
Vol 42 (2) ◽  
pp. 315-341 ◽  
Author(s):  
Stéphane Louboutin

Frobenius-Rabinowitsch's theorem provides us with a necessary and sufficient condition for the class-number of a complex quadratic field with negative discriminant D to be one in terms of the primality of the values taken by the quadratic polynomial with discriminant Don consecutive integers (See [1], [7]). M. D. Hendy extended Frobenius-Rabinowitsch's result to a necessary and sufficient condition for the class-number of a complex quadratic field with discriminant D to be two in terms of the primality of the values taken by the quadratic polynomials and with discriminant D (see [2], [7]).


1979 ◽  
Vol 31 (2) ◽  
pp. 255-263 ◽  
Author(s):  
Z. Ditzian

The Szász and Baskakov approximation operators are given by1.11.2respectively. For continuous functions on [0, ∞) with exponential growth (i.e. ‖ƒ‖A ≡ supx\ƒ(x)e–Ax\ < M) the modulus of continuity is defined by1.3where ƒ ∈ Lip* (∝, A) for some 0 < ∝ ≦ 2 if w2(ƒ, δ, A) ≦ Mδ∝ for all δ < 1. We shall find a necessary and sufficient condition on the rate of convergence of An(ƒ, x) (representing Sn(ƒ, x) or Vn(ƒ, x)) to ƒ(x) for ƒ(x) ∈ Lip* (∝, A). In a recent paper of M. Becker [1] such conditions were found for functions of polynomial growth (where (1 + \x\N)−1 replaced e–Ax in the above). M. Becker explained the difficulties in treating functions of exponential growth.


1978 ◽  
Vol 26 (1) ◽  
pp. 31-45 ◽  
Author(s):  
J. H. Loxton ◽  
A. J. van der Poorten

AbstractWe consider algebraic independence properties of series such as We show that the functions fr(z) are algebraically independent over the rational functions Further, if αrs (r = 2, 3, 4, hellip; s = 1, 2, 3, hellip) are algebraic numbers with 0 < |αrs|, we obtain an explicit necessary and sufficient condition for the algebraic independence of the numbers fr(αrs) over the rationals.


1972 ◽  
Vol 18 (2) ◽  
pp. 129-136 ◽  
Author(s):  
Ian Anderson

A graph G is said to possess a perfect matching if there is a subgraph of G consisting of disjoint edges which together cover all the vertices of G. Clearly G must then have an even number of vertices. A necessary and sufficient condition for G to possess a perfect matching was obtained by Tutte (3). If S is any set of vertices of G, let p(S) denote the number of components of the graph G – S with an odd number of vertices. Then the conditionis both necessary and sufficient for the existence of a perfect matching. A simple proof of this result is given in (1).


Author(s):  
Vũ Qúôc Phóng

SynopsisLetHbe a Hilbert space in which a symmetric operatorSwith a dense domainDsis given and letShave a finite deficiency index (r, s). This paper contains a necessary and sufficient condition for validity of the following inequalities of Kolmogorov typeand a method for calculating the best possible constantsCn,m(S).Moreover, let φ be a symmetric bilinear functional with a dense domainDφsuch thatDs⊂Dφand φ(f, g) = (Sf, g) for allf∈Ds,g∈Dφ. A necessary and sufficient condition for validity of the inequalityas well as a method for calculating the best possible constantKare obtained. Then an analogous approach is worked out in order to obtain the best possible additive inequalities of the formThe paper is concluded by establishing the best possible constants in the inequalitieswhereTis an arbitrary dissipative operator. The theorems are extensions of the results of Ju. I. Ljubič, W. N. Everitt, and T. Kato.


1996 ◽  
Vol 39 (3) ◽  
pp. 275-283 ◽  
Author(s):  
J. R. Graef ◽  
C. Qian ◽  
P. W. Spikes

AbstractConsider the delay differential equationwhere α(t) and β(t) are positive, periodic, and continuous functions with period w > 0, and m is a nonnegative integer. We show that this equation has a positive periodic solution x*(t) with period w. We also establish a necessary and sufficient condition for every solution of the equation to oscillate about x*(t) and a sufficient condition for x*(t) to be a global attractor of all solutions of the equation.


Sign in / Sign up

Export Citation Format

Share Document