scholarly journals The (CO)homology of groups given by presentations in which each defining relator involves at most two types of generators

Author(s):  
Stephen J. Pride

AbstractOur set-up will consist of the following: (i) a graph with vertex set V and edge set E; (ii) for each vertex ∈ V a non-trivial group Gv given by a presentation (xν; rν); (iii) for each edge e = {u, ν} ∈ E a group Ge given by a presentation (xu, xv; re) where re consists of the elements of ru ∪ rv, together with some further words on xu ∪ xv. We let G = (x; r) where x = ∪v∈v xv, r = ∪e∈E re. Ouraim is to try to describe the structure of G in terms of the groups Gv, (v ∈ V), Ge (e ∈ E). Under suitable conditions the natural homomorphisms Gv, → G (ν ∈ V), Ge → Ge (e ε E) are injective; and there is a short exact sequence (where, for any group H, IH is the augmentation ideal). Some (co)homological consequences of these resultsare derived.

1987 ◽  
Vol 29 (1) ◽  
pp. 13-19 ◽  
Author(s):  
G. J. Ellis

Various authors have obtained an eight term exact sequence in homologyfrom a short exact sequence of groups,the term V varying from author to author (see [7] and [2]; see also [5] for the simpler case where N is central in G, and [6] for the case where N is central and N ⊂ [G, G]). The most satisfying version of the sequence is obtained by Brown and Loday [2] (full details of [2] are in [3]) as a corollary to their van Kampen type theorem for squares of spaces: they give the term V as the kernel of a map G ∧ N → N from a “non-abelian exterior product” of G and N to the group N (the definition of G ∧ N, first published in [2], is recalled below). The two short exact sequencesandwhere F is free, together with the fact that H2(F) = 0 and H3(F) = 0, imply isomorphisms..The isomorphism (2) is essentially the description of H2(G) proved algebraically in [11]. As noted in [2], the isomorphism (3) is the analogue for H3(G) of the Hopf formula for H2(G).


1996 ◽  
Vol 119 (3) ◽  
pp. 425-445 ◽  
Author(s):  
D. Kirby ◽  
D. Rees

While this paper is principally a continuation of [5], with as its object the application of sections 6 and 7 of that paper to obtain results related to the Buchsbaum–Rim multiplicity, it also has connections with [8] which are the subject of the first of the four sections. These concern integral equivalence of finitely generated R-modules. where R is an arbitrary noetherian ring. We therefore introduce a finitely generated R-module M and relate to it a short exact sequence (s.e.s.),where F is a free module generated by m elements u1,…, um, and L is generated by elements yj, (j = 1, …, n), of F. We identify the elements u1, …, um with a set of indeterminates X1, …, Xm, and F with the R-module S1 of elements of degree 1 of the graded ring S = R[X1, …, Xm].


1971 ◽  
Vol 23 (6) ◽  
pp. 977-982 ◽  
Author(s):  
Irwin S. Pressman

A commutative square (1) of morphisms is said to have a lifting if there is a morphism λ: B1 → A2 such that λϕ1 = α and ϕ2λ = β1Let us assume that we are working in a fixed abelian category . Therefore, ϕi will have a kernel “Ki” and a cokernel “Ci” for i = 1, 2. Let k : K1 → K2 and c: C1 → C2 denote the canonical morphisms induced by α and β.We shall construct a short exact sequence (s.e.s.)2using the data of (1). We shall prove that (1) has a lifting if and only if k = 0, c = 0, and (2) represents the zero class in Ext1(C1, K2). Furthermore, if (1) has one lifting, then the liftings will be in one-to-one correspondence with the elements of the set |Hom(G1, K2)|.


1989 ◽  
Vol 31 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Torsten Hannebauer

Let G be a group anda free presentation of G, i.e. a short exact sequence of groups with F free. Conjugation in F induces on = R/R', the abelianized normal subgroup R, the structure of a right G-module (if r∈ R, x∈ F then (r)(xπ) = x-1rxR'). The G-module is called the relation module determined by the presentation (1). For a detailed discussion of this subject we refer to Gruenberg [3].


1979 ◽  
Vol 85 (2) ◽  
pp. 261-270 ◽  
Author(s):  
Gerald Losey ◽  
Nora Losey

1. LetGbe a group,ZGits integral group ring and Δ = ΔGthe augmentation idealZGBy anaugmentation quotientofGwe mean any one of theZG-moduleswheren, r≥ 1. In recent years there has been a great deal of interest in determining the abelian group structure of the augmentation quotientsQn(G) =Qn,1(G) and(see (1, 2, 7, 8, 9, 12, 13, 14, 15)). Passi(8) has shown that in order to determineQn(G) andPn(G) for finiteGit is sufficient to assume thatGis ap-group. Passi(8, 9) and Singer(13, 14) have obtained information on the structure of these quotients for certain classes of abelianp-groups. However little seems to be known of a quantitative nature for nonabelian groups. In (2) Bachmann and Grünenfelder have proved the following qualitative result: ifGis a finite group then there exist natural numbersn0and π such thatQn(G) ≅Qn+π(G) for alln≥n0; ifGωis the nilpotent residual ofGandG/Gωhas classcthen π divides l.c.m. {1, 2, …,c}. There do not appear to be any examples in the literature of this periodic behaviour forc> 1. One of goals here is to present such examples. These examples will be from the class of finitep-groups in which the lower central series is anNp-series.


Author(s):  
G. R. Grimmett ◽  
C. J. H. McDiarmid

AbstractLet ωn denote a random graph with vertex set {1, 2, …, n}, such that each edge is present with a prescribed probability p, independently of the presence or absence of any other edges. We show that the number of vertices in the largest complete subgraph of ωn is, with probability one,


1971 ◽  
Vol 23 (3) ◽  
pp. 503-506
Author(s):  
Hsiang-Dah Hou

Let R be a ring with 1 ≠ 0 and α, β, γ R-endomorphisms of R-modules A, B, and C respectively. We shall denote by M(R) the category of R-modules, and by End(R) the category of R-endomorphisms. For objects α and β of End(R) a morphism λ: α → β is an R-homomorphism such that λα = β λ. We shall denote by Idm(R) the full subcategory of End(R) whose objects are idempotents. Idm(R) is an abelian category, ker, coker and im are constructed in the naive way and henceis exact in M(R) if and only ifis exact in Idm(R), where the domains of α,β, and γ are A, B, and C respectively. One sees that End (R) as well as Idm(R) is abelian.


1973 ◽  
Vol 16 (4) ◽  
pp. 517-520 ◽  
Author(s):  
M. J. Dunwoody ◽  
A. Pietrowski

A presentation of a group G is an exact sequence of groupswhere F is a free group. Let l→S ⊆ F→G→1 be another presentation of G involving the same free group F.


1969 ◽  
Vol 21 ◽  
pp. 684-701 ◽  
Author(s):  
Benson Samuel Brown

Our aim in this paper is to prove the general mod ℭ suspension theorem: Suppose that X and Y are CW-complexes,ℭ is a class offinite abelian groups, and that(i) πi(Y) ∈ℭfor all i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z) ∈ℭfor all i > k.Then the suspension homomorphismis a(mod ℭ) monomorphism for 2 ≦ r ≦ 2n – k – 2 (when r= 1, ker E is a finite group of order d, where Zd∈ ℭ and is a (mod ℭ) epimorphism for 2 ≦ r ≦ 2n – k – 2The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on (mod ℭ) versions of the Serre exact sequence and of the Whitehead theorem.


2011 ◽  
Vol 151 (3) ◽  
pp. 471-502 ◽  
Author(s):  
YOUNGJIN BAE ◽  
URS FRAUENFELDER

AbstractWill J. Merry computed Rabinowitz Floer homology above Mañé's critical value in terms of loop space homology in [14] by establishing an Abbondandolo–Schwarz short exact sequence. The purpose of this paper is to provide an alternative proof of Merry's result. We construct a continuation homomorphism for symplectic deformations which enables us to reduce the computation to the untwisted case. Our construction takes advantage of a special version of the isoperimetric inequality which above Mañé's critical value holds true.


Sign in / Sign up

Export Citation Format

Share Document