Obstructions to Liftings in Commutative Squares

1971 ◽  
Vol 23 (6) ◽  
pp. 977-982 ◽  
Author(s):  
Irwin S. Pressman

A commutative square (1) of morphisms is said to have a lifting if there is a morphism λ: B1 → A2 such that λϕ1 = α and ϕ2λ = β1Let us assume that we are working in a fixed abelian category . Therefore, ϕi will have a kernel “Ki” and a cokernel “Ci” for i = 1, 2. Let k : K1 → K2 and c: C1 → C2 denote the canonical morphisms induced by α and β.We shall construct a short exact sequence (s.e.s.)2using the data of (1). We shall prove that (1) has a lifting if and only if k = 0, c = 0, and (2) represents the zero class in Ext1(C1, K2). Furthermore, if (1) has one lifting, then the liftings will be in one-to-one correspondence with the elements of the set |Hom(G1, K2)|.

1971 ◽  
Vol 23 (3) ◽  
pp. 503-506
Author(s):  
Hsiang-Dah Hou

Let R be a ring with 1 ≠ 0 and α, β, γ R-endomorphisms of R-modules A, B, and C respectively. We shall denote by M(R) the category of R-modules, and by End(R) the category of R-endomorphisms. For objects α and β of End(R) a morphism λ: α → β is an R-homomorphism such that λα = β λ. We shall denote by Idm(R) the full subcategory of End(R) whose objects are idempotents. Idm(R) is an abelian category, ker, coker and im are constructed in the naive way and henceis exact in M(R) if and only ifis exact in Idm(R), where the domains of α,β, and γ are A, B, and C respectively. One sees that End (R) as well as Idm(R) is abelian.


1987 ◽  
Vol 29 (1) ◽  
pp. 13-19 ◽  
Author(s):  
G. J. Ellis

Various authors have obtained an eight term exact sequence in homologyfrom a short exact sequence of groups,the term V varying from author to author (see [7] and [2]; see also [5] for the simpler case where N is central in G, and [6] for the case where N is central and N ⊂ [G, G]). The most satisfying version of the sequence is obtained by Brown and Loday [2] (full details of [2] are in [3]) as a corollary to their van Kampen type theorem for squares of spaces: they give the term V as the kernel of a map G ∧ N → N from a “non-abelian exterior product” of G and N to the group N (the definition of G ∧ N, first published in [2], is recalled below). The two short exact sequencesandwhere F is free, together with the fact that H2(F) = 0 and H3(F) = 0, imply isomorphisms..The isomorphism (2) is essentially the description of H2(G) proved algebraically in [11]. As noted in [2], the isomorphism (3) is the analogue for H3(G) of the Hopf formula for H2(G).


1996 ◽  
Vol 119 (3) ◽  
pp. 425-445 ◽  
Author(s):  
D. Kirby ◽  
D. Rees

While this paper is principally a continuation of [5], with as its object the application of sections 6 and 7 of that paper to obtain results related to the Buchsbaum–Rim multiplicity, it also has connections with [8] which are the subject of the first of the four sections. These concern integral equivalence of finitely generated R-modules. where R is an arbitrary noetherian ring. We therefore introduce a finitely generated R-module M and relate to it a short exact sequence (s.e.s.),where F is a free module generated by m elements u1,…, um, and L is generated by elements yj, (j = 1, …, n), of F. We identify the elements u1, …, um with a set of indeterminates X1, …, Xm, and F with the R-module S1 of elements of degree 1 of the graded ring S = R[X1, …, Xm].


Author(s):  
Stephen J. Pride

AbstractOur set-up will consist of the following: (i) a graph with vertex set V and edge set E; (ii) for each vertex ∈ V a non-trivial group Gv given by a presentation (xν; rν); (iii) for each edge e = {u, ν} ∈ E a group Ge given by a presentation (xu, xv; re) where re consists of the elements of ru ∪ rv, together with some further words on xu ∪ xv. We let G = (x; r) where x = ∪v∈v xv, r = ∪e∈E re. Ouraim is to try to describe the structure of G in terms of the groups Gv, (v ∈ V), Ge (e ∈ E). Under suitable conditions the natural homomorphisms Gv, → G (ν ∈ V), Ge → Ge (e ε E) are injective; and there is a short exact sequence (where, for any group H, IH is the augmentation ideal). Some (co)homological consequences of these resultsare derived.


1989 ◽  
Vol 31 (3) ◽  
pp. 263-270 ◽  
Author(s):  
Torsten Hannebauer

Let G be a group anda free presentation of G, i.e. a short exact sequence of groups with F free. Conjugation in F induces on = R/R', the abelianized normal subgroup R, the structure of a right G-module (if r∈ R, x∈ F then (r)(xπ) = x-1rxR'). The G-module is called the relation module determined by the presentation (1). For a detailed discussion of this subject we refer to Gruenberg [3].


1968 ◽  
Vol 8 (3) ◽  
pp. 631-637 ◽  
Author(s):  
R. A. Bryce

It is a consequence of the Kurosh subgroup theorem for free products that if a group has two decompositions where each Ai and each Bj is indecomposable, then I and J can be placed in one-to-one correspondence so that corresponding groups if not conjugate are infinite cycles. We prove here a corresponding result for free products with a normal amalgamation.


1973 ◽  
Vol 16 (4) ◽  
pp. 517-520 ◽  
Author(s):  
M. J. Dunwoody ◽  
A. Pietrowski

A presentation of a group G is an exact sequence of groupswhere F is a free group. Let l→S ⊆ F→G→1 be another presentation of G involving the same free group F.


1969 ◽  
Vol 21 ◽  
pp. 684-701 ◽  
Author(s):  
Benson Samuel Brown

Our aim in this paper is to prove the general mod ℭ suspension theorem: Suppose that X and Y are CW-complexes,ℭ is a class offinite abelian groups, and that(i) πi(Y) ∈ℭfor all i < n,(ii) H*(X; Z) is finitely generated,(iii) Hi(X;Z) ∈ℭfor all i > k.Then the suspension homomorphismis a(mod ℭ) monomorphism for 2 ≦ r ≦ 2n – k – 2 (when r= 1, ker E is a finite group of order d, where Zd∈ ℭ and is a (mod ℭ) epimorphism for 2 ≦ r ≦ 2n – k – 2The proof is basically the same as the proof of the regular suspension theorem. It depends essentially on (mod ℭ) versions of the Serre exact sequence and of the Whitehead theorem.


1986 ◽  
Vol 38 (6) ◽  
pp. 1329-1337 ◽  
Author(s):  
Richard J. Libera ◽  
Eligiusz J. Złotkiewicz

If f(z) is univalent (regular and one-to-one) in the open unit disk Δ, Δ = {z ∊ C:│z│ < 1}, and has a Maclaurin series expansion of the form(1.1)then, as de Branges has shown, │ak│ = k, for k = 2, 3, … and the Koebe function.(1.1)serves to show that these bounds are the best ones possible (see [3]). The functions defined above are generally said to constitute the class .


2011 ◽  
Vol 151 (3) ◽  
pp. 471-502 ◽  
Author(s):  
YOUNGJIN BAE ◽  
URS FRAUENFELDER

AbstractWill J. Merry computed Rabinowitz Floer homology above Mañé's critical value in terms of loop space homology in [14] by establishing an Abbondandolo–Schwarz short exact sequence. The purpose of this paper is to provide an alternative proof of Merry's result. We construct a continuation homomorphism for symplectic deformations which enables us to reduce the computation to the untwisted case. Our construction takes advantage of a special version of the isoperimetric inequality which above Mañé's critical value holds true.


Sign in / Sign up

Export Citation Format

Share Document