CHEBYSHEV SETS

2014 ◽  
Vol 98 (2) ◽  
pp. 161-231 ◽  
Author(s):  
JAMES FLETCHER ◽  
WARREN B. MOORS

AbstractA Chebyshev set is a subset of a normed linear space that admits unique best approximations. In the first part of this paper we present some basic results concerning Chebyshev sets. In particular, we investigate properties of the metric projection map, sufficient conditions for a subset of a normed linear space to be a Chebyshev set, and sufficient conditions for a Chebyshev set to be convex. In the second half of the paper we present a construction of a nonconvex Chebyshev subset of an inner product space.

1981 ◽  
Vol 24 (2) ◽  
pp. 239-246 ◽  
Author(s):  
O. P. Kapoor ◽  
S. B. Mathur

There are several geometric characterizations of inner product spaces amongst the normed linear spaces. Mahlon M. Day's refinement “rhombi suffice as well as parallelograms”, of P. Jordan and J. von Neumann parallelogram law is well known. There are some characterizations which employ various notions of orthogonality. For example, it is known that if in a normed linear space Birkhoff-James orthogonality implies isosceles orthogonality. For example, it is known that if in a normed linear space Birkhoff-James orthogonality implies isosceles orthogonality then the space is an inner product space; geometrically it means that if the diagonals of a rectangle, with sides perpendicular in Birkhoff-James sense, are equal then the space is an inner product space. In the main result of this note we improve upon this characterization and show that here unit squares suffice as well as rectangles.


2020 ◽  
pp. 3042-3047
Author(s):  
Radhi I. M. Ali ◽  
Esraa A. Hussein

In this paper, the definition of fuzzy anti-inner product in a linear space is introduced. Some results of fuzzy anti-inner product spaces are given, such as the relation between fuzzy inner product space and fuzzy anti-inner product. The notion of minimizing vector is introduced in fuzzy anti-inner product settings.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 116
Author(s):  
Qi Liu ◽  
Yongjin Li

In this paper, we will introduce a new geometric constant LYJ(λ,μ,X) based on an equivalent characterization of inner product space, which was proposed by Moslehian and Rassias. We first discuss some equivalent forms of the proposed constant. Next, a characterization of uniformly non-square is given. Moreover, some sufficient conditions which imply weak normal structure are presented. Finally, we obtain some relationship between the other well-known geometric constants and LYJ(λ,μ,X). Also, this new coefficient is computed for X being concrete space.


Mathematics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 765
Author(s):  
Lorena Popa ◽  
Lavinia Sida

The aim of this paper is to provide a suitable definition for the concept of fuzzy inner product space. In order to achieve this, we firstly focused on various approaches from the already-existent literature. Due to the emergence of various studies on fuzzy inner product spaces, it is necessary to make a comprehensive overview of the published papers on the aforementioned subject in order to facilitate subsequent research. Then we considered another approach to the notion of fuzzy inner product starting from P. Majundar and S.K. Samanta’s definition. In fact, we changed their definition and we proved some new properties of the fuzzy inner product function. We also proved that this fuzzy inner product generates a fuzzy norm of the type Nădăban-Dzitac. Finally, some challenges are given.


1994 ◽  
Vol 37 (3) ◽  
pp. 338-345 ◽  
Author(s):  
D. Ž. Doković ◽  
P. Check ◽  
J.-Y. Hée

AbstractLet R be a root system (in the sense of Bourbaki) in a finite dimensional real inner product space V. A subset P ⊂ R is closed if α, β ∊ P and α + β ∊ R imply that α + β ∊ P. In this paper we shall classify, up to conjugacy by the Weyl group W of R, all closed sets P ⊂ R such that R\P is also closed. We also show that if θ:R —> R′ is a bijection between two root systems such that both θ and θ-1 preserve closed sets, and if R has at most one irreducible component of type A1, then θ is an isomorphism of root systems.


2019 ◽  
Vol 484 (2) ◽  
pp. 131-133
Author(s):  
A. R. Alimov ◽  
E. V. Shchepin

A direction d is called a tangent direction to the unit sphere S of a normed linear space s  S and lin(s + d) is a tangent line to the sphere S at s imply that lin(s + d) is a one-sided tangent to the sphere S, i. e., it is the limit of secant lines at s. A set M is called convex with respect to a direction d if [x, y]  M whenever x, y in M, (y - x) || d. We show that in a normed linear space an arbitrary sun (in particular, a boundedly compact Chebyshev set) is convex with respect to any tangent direction of the unit sphere.


Sign in / Sign up

Export Citation Format

Share Document