scholarly journals ON BORWEIN’S CONJECTURES FOR PLANAR UNIFORM RANDOM WALKS

2019 ◽  
Vol 107 (3) ◽  
pp. 392-411 ◽  
Author(s):  
YAJUN ZHOU

Let $p_{n}(x)=\int _{0}^{\infty }J_{0}(xt)[J_{0}(t)]^{n}xt\,dt$ be Kluyver’s probability density for $n$-step uniform random walks in the Euclidean plane. Through connection to a similar problem in two-dimensional quantum field theory, we evaluate the third-order derivative $p_{5}^{\prime \prime \prime }(0^{+})$ in closed form, thereby giving a new proof for a conjecture of J. M. Borwein. By further analogies to Feynman diagrams in quantum field theory, we demonstrate that $p_{n}(x),0\leq x\leq 1$ admits a uniformly convergent Maclaurin expansion for all odd integers $n\geq 5$, thus settling another conjecture of Borwein.

2004 ◽  
Vol 19 (15) ◽  
pp. 2545-2559
Author(s):  
ANATOLY KONECHNY

We present some explicit computations checking a particular form of gradient formula for a boundary beta function in two-dimensional quantum field theory on a disk. The form of the potential function and metric that we consider were introduced in Refs. 16 and 18 in the context of background independent open string field theory. We check the gradient formula to the third order in perturbation theory around a fixed point. Special consideration is given to situations when resonant terms are present exhibiting logarithmic divergences and universal nonlinearities in beta functions. The gradient formula is found to work to the given order.


2010 ◽  
Vol 25 (11) ◽  
pp. 2355-2363 ◽  
Author(s):  
L. H. FORD

Quantum field theory allows for the suppression of vacuum fluctuations, leading to sub-vacuum phenomena. One of these is the appearance of local negative energy density. Selected aspects of negative energy will be reviewed, including the quantum inequalities which limit its magnitude and duration. However, these inequalities allow the possibility that negative energy and related effects might be observable. Some recent proposals for experiments to search for sub-vacuum phenomena will be discussed. Fluctuations of the energy density around its mean value will also be considered, and some recent results on a probability distribution for the energy density in two dimensional spacetime are summarized.


2020 ◽  
pp. 575-621
Author(s):  
Giuseppe Mussardo

Chapter 16 covers the general properties of the integrable quantum field theories, including how an integrable quantum field theory is characterized by an infinite number of conserved charges. These theories are illustrated by means of significant examples, such as the Sine–Gordon model or the Toda field theories based on the simple roots of a Lie algebra. For the deformations of a conformal theory, it shown how to set up an efficient counting algorithm to prove the integrability of the corresponding model. The chapter focuses on two-dimensional models, and uses the term ‘two-dimensional’ to denote both a generic two-dimensional quantum field theory as well as its Euclidean version.


2020 ◽  
Vol 61 (6) ◽  
pp. 063510
Author(s):  
Sebastian Novak ◽  
Ingo Runkel

1978 ◽  
Vol 18 (12) ◽  
pp. 4435-4459 ◽  
Author(s):  
T. S. Bunch ◽  
S. M. Christensen ◽  
S. A. Fulling

Sign in / Sign up

Export Citation Format

Share Document