Radiation-induced racemization and amplification of chirality: implications for comets and meteorites

2007 ◽  
Vol 6 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Franco Cataldo

The action of high-energy radiation on prebiotic chiral molecules plays against the preservation of chirality. Chiral molecules incorporated in comets and meteorites are bombarded for billions of years by cosmic rays and by the high-energy radiation due to the decay of naturally occurring radionuclides. The action of cosmic rays on the surface of comets and meteorites causes the complete radiation processing of the surface of these bodies, but at depths of 20 m or so the cosmic rays are completely shielded and the radiation should derive only from the decay of radionuclides. In 4.6×109 yr the radiation dose supplied by the radionuclide decay to the organic molecules present inside the cometary or meteoritic body is equivalent to 14000 kGy. Our studies on the radiolysis of a series of naturally occurring chiral molecules, the terpenes, have shown that although all undergo the radioracemization reaction, the extent of radioracemization is such that a significant fraction of chiral excess and chiral molecules can survive a radiation dose equivalent to 14000 kGy. A unique exception is represented by the terpene β-(−)-pinene which, instead of the expected radioracemization reaction, undergoes a radiation-induced polymerization. The resulting poly-β-pinene, having an highly ordered supramolecular structure, displays an optical activity which is 1.7 times higher than the starting monomer. Thus, in this specific case, the optical activity is not reduced but enhanced by the action of radiation and remains locked into a polymer which displays a considerable radiation resistance and may act as a chiral template and as a chiral surface for prebiotic chemistry.

2021 ◽  
Author(s):  
Patrick Barth ◽  
Christiane Helling ◽  
Eva E. Stüeken ◽  
Vincent Bourrier ◽  
Nathan Mayne ◽  
...  

<p>Hot Jupiters provide valuable natural laboratories for studying potential contributions of high-energy radiation to prebiotic synthesis in the atmospheres of exoplanets. HD 189733b, a hot Jupiter orbiting a K star, is one of the most studied and best observed exoplanets. We combine XUV observations and 3D climate simulations to model the atmospheric composition and kinetic chemistry with the STAND2019 network. We show how XUV radiation, cosmic rays (CR), and stellar energetic particles (SEP) influence the chemistry of the atmosphere. We explore the effect that the change in the XUV radiation has over time, and we identify key atmospheric signatures of an XUV, CR, and SEP influx. 3D simulations of HD 189733b's atmosphere with the 3D Met Office Unified Model provide a fine grid of pressure-temperature profiles, consistently taking into account kinetic cloud formation. We apply <em>HST</em> and <em>XMM-Newton/Swift</em> observations obtained by the MOVES programmewhich provide combined X-ray and ultraviolet (XUV) spectra of the host star HD 189733 at 4 different points in time. We find that the differences in the radiation field between the irradiated dayside and the shadowed nightside lead to stronger changes in the chemical abundances than the variability of the host star's XUV emission. We identify ammonium (NH<sub>4</sub><sup>+</sup>) and oxonium (H<sub>3</sub>O<sup>+</sup>) as fingerprint ions for the ionization of the atmosphere by both galactic cosmic rays and stellar particles. All considered types of high-energy radiation have an enhancing effect on the abundance of key organic molecules such as hydrogen cyanide (HCN), formaldehyde (CH<sub>2</sub>O), and ethylene (C<sub>2</sub>H<sub>4</sub>). The latter two are intermediates in the production pathway of the amino acid glycine (C<sub>2</sub>H<sub>5</sub>NO<sub>2</sub>) and abundant enough to be potentially detectable by <em>JWST</em>. Ultimately, we show that high energy processes potentially play an important role in prebiotic chemistry.</p><p>P Barth et al., MOVES IV. Modelling the influence of stellar XUV-flux, cosmic rays, and stellar energetic particles on the atmospheric composition of the hot Jupiter HD 189733b, <em>Monthly Notices of the Royal Astronomical Society</em>, in press, DOI:10.1093/mnras/staa3989</p>


2020 ◽  
Vol 177 ◽  
pp. 109115
Author(s):  
Majid Muneer ◽  
Muhammad Imran Kanjal ◽  
Muhammad Saeed ◽  
Tariq Javed ◽  
Atta Ul Haq ◽  
...  

2004 ◽  
Vol 37 (7) ◽  
pp. 2668-2670 ◽  
Author(s):  
Frederick G. Morin ◽  
Byron D. Jordan ◽  
Robert H. Marchessault

1968 ◽  
Vol 1 (3) ◽  
pp. 113-114 ◽  
Author(s):  
A.G. Fenton ◽  
K.B. Fenton

Using a network of ground-based stations stretching from Lae, New Guinea, to the Antarctic, and high altitude balloons and rockets, the Hobart cosmic ray group is studying several aspects of naturally-occurring high energy radiation.


Sign in / Sign up

Export Citation Format

Share Document