PETERZIL–STEINHORN SUBGROUPS AND -STABILIZERS IN ACF

Author(s):  
Moshe Kamensky ◽  
Sergei Starchenko ◽  
Jinhe Ye

Abstract We consider G, a linear algebraic group defined over $\Bbbk $ , an algebraically closed field (ACF). By considering $\Bbbk $ as an embedded residue field of an algebraically closed valued field K, we can associate to it a compact G-space $S^\mu _G(\Bbbk )$ consisting of $\mu $ -types on G. We show that for each $p_\mu \in S^\mu _G(\Bbbk )$ , $\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$ is a solvable infinite algebraic group when $p_\mu $ is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of $\mathrm {Stab}\left (p_\mu \right )$ in terms of the dimension of p.

Author(s):  
Indranil Biswas ◽  
Georg Schumacher

AbstractLet G be a simple linear algebraic group defined over an algebraically closed field k of characteristic p ≥ 0, and let P be a maximal proper parabolic subgroup of G. If p > 0, then we will assume that dimG/P ≤ p. Let ι : H ↪ G/P be a reduced smooth hypersurface in G/P of degree d. We will assume that the pullback homomorphism is an isomorphism (this assumption is automatically satisfied when dimH ≥ 3). We prove that the tangent bundle of H is stable if the two conditions τ(G/P) ≠ d and hold; here n = dimH, and τ(G/P) ∈ is the index of G/P which is defined by the identity = where L is the ample generator of Pic(G/P) and is the anti–canonical line bundle of G/P. If d = τ(G/P), then the tangent bundle TH is proved to be semistable. If p > 0, and then TH is strongly stable. If p > 0, and d = τ(G/P), then TH is strongly semistable.


2008 ◽  
Vol 190 ◽  
pp. 105-128 ◽  
Author(s):  
Russell Fowler ◽  
Gerhard Röhrle

Let G be a connected reductive linear algebraic group defined over an algebraically closed field of characteristic p. Assume that p is good for G. In this note we consider particular classes of connected reductive subgroups H of G and show that the cocharacters of H that are associated to a given nilpotent element e in the Lie algebra of H are precisely the cocharacters of G associated to e that take values in H. In particular, we show that this is the case provided H is a connected reductive subgroup of G of maximal rank; this answers a question posed by J. C. Jantzen.


2004 ◽  
Vol 174 ◽  
pp. 201-223 ◽  
Author(s):  
Indranil Biswas ◽  
Yogish I. Holla

AbstractLet E be a principal G–bundle over a smooth projective curve over an algebraically closed field k, where G is a reductive linear algebraic group over k. We construct a canonical reduction of E. The uniqueness of canonical reduction is proved under the assumption that the characteristic of k is zero. Under a mild assumption on the characteristic, the uniqueness is also proved when the characteristic of k is positive.


2016 ◽  
Vol 19 (1) ◽  
pp. 235-258 ◽  
Author(s):  
David I. Stewart

Let $G$ be a simple simply connected exceptional algebraic group of type $G_{2}$, $F_{4}$, $E_{6}$ or $E_{7}$ over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$. For each nilpotent orbit $G\cdot e$ of $\mathfrak{g}$, we list the Jordan blocks of the action of $e$ on the minimal induced module $V_{\text{min}}$ of $\mathfrak{g}$. We also establish when the centralizers $G_{v}$ of vectors $v\in V_{\text{min}}$ and stabilizers $\text{Stab}_{G}\langle v\rangle$ of $1$-spaces $\langle v\rangle \subset V_{\text{min}}$ are smooth; that is, when $\dim G_{v}=\dim \mathfrak{g}_{v}$ or $\dim \text{Stab}_{G}\langle v\rangle =\dim \text{Stab}_{\mathfrak{g}}\langle v\rangle$.


1971 ◽  
Vol 12 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Bhama Srinivasan

Let K be an algebraically closed field of characteristic ρ >0. If G is a connected, simple connected, semisimple linear algebraic group defined over K and σ an endomorphism of G onto G such that the subgroup Gσ of fixed points of σ is finite, Steinberg ([6] [7]) has shown that there is a complex irreducible character χ of Gσ with the following properties. χ vanishes at all elements of Gσ which are not semi- simple, and, if x ∈ G is semisimple, χ(x) = ±n(x) where n(x)is the order of a Sylow p-subgroup of (ZG(x))σ (ZG(x) is the centraliser of x in G). If G is simple he has, in [6], identified the possible groups Gσ they are the Chevalley groups and their twisted analogues over finite fields, that is, the ‘simply connected’ versions of finite simple groups of Lie type. In this paper we show, under certain restrictions on the type of the simple algebraic group G an on the characteristic of K, that χ can be expressed as a linear combination with integral coefficients of characters induced from linear characters of certain naturally defined subgroups of Gσ. This expression for χ gives an explanation for the occurence of n(x) in the formula for χ (x), and also gives an interpretation for the ± 1 occuring in the formula in terms of invariants of the reductive algebraic group ZG(x).


Author(s):  
P. Bala ◽  
R. W. Carter

LetGbe a simple adjoint algebraic group over an algebraically closed fieldK. We are concerned to describe the conjugacy classes of unipotent elements ofG. Goperates on its Lie algebra g by means of the adjoint action and we may consider classes of nilpotent elements of g under this action. It has been shown by Springer (11) that there is a bijection between the unipotent elements ofGand the nilpotent elements ofgwhich preserves theG-action, provided that the characteristic ofKis either 0 or a ‘good prime’ forG. Thus we may concentrate on the problem of classifying the nilpotent elements of g under the adjointG-action.


2008 ◽  
Vol 11 ◽  
pp. 280-297 ◽  
Author(s):  
Willem A. de Graaf

AbstractLet G be a simple algebraic group over an algebraically closed field with Lie algebra g. Then the orbits of nilpotent elements of g under the adjoint action of G have been classified. We describe a simple algorithm for finding a representative of a nilpotent orbit. We use this to compute lists of representatives of these orbits for the Lie algebras of exceptional type. Then we give two applications. The first one concerns settling a conjecture by Elashvili on the index of centralizers of nilpotent orbits, for the case where the Lie algebra is of exceptional type. The second deals with minimal dimensions of centralizers in centralizers.


1992 ◽  
Vol 111 (2) ◽  
pp. 267-272
Author(s):  
Hurit nsiper

Given a smooth projective surface X over an algebraically closed field k and a modulus (an effective divisor) m on X, one defines the idle class group Cm(X) of X with modulus m (see 1, chapter III, section 4). The corresponding generalized Albanese variety Gum and the generalized Albanese map um:X|m|Gum have the following universal mapping property (2): if :XG is a rational map into a commutative algebraic group which induces a homomorphism Cm(X)G(k) (1, chapter III, proposition 1), then factors uniquely through um.


2015 ◽  
Vol 16 (4) ◽  
pp. 887-898
Author(s):  
Noriyuki Abe ◽  
Masaharu Kaneda

Let $G$ be a reductive algebraic group over an algebraically closed field of positive characteristic, $G_{1}$ the Frobenius kernel of $G$, and $T$ a maximal torus of $G$. We show that the parabolically induced $G_{1}T$-Verma modules of singular highest weights are all rigid, determine their Loewy length, and describe their Loewy structure using the periodic Kazhdan–Lusztig $P$- and $Q$-polynomials. We assume that the characteristic of the field is sufficiently large that, in particular, Lusztig’s conjecture for the irreducible $G_{1}T$-characters holds.


Sign in / Sign up

Export Citation Format

Share Document