scholarly journals Harder–Narasimhan reduction of a principal bundle

2004 ◽  
Vol 174 ◽  
pp. 201-223 ◽  
Author(s):  
Indranil Biswas ◽  
Yogish I. Holla

AbstractLet E be a principal G–bundle over a smooth projective curve over an algebraically closed field k, where G is a reductive linear algebraic group over k. We construct a canonical reduction of E. The uniqueness of canonical reduction is proved under the assumption that the characteristic of k is zero. Under a mild assumption on the characteristic, the uniqueness is also proved when the characteristic of k is positive.

Author(s):  
Indranil Biswas ◽  
Georg Schumacher

AbstractLet G be a simple linear algebraic group defined over an algebraically closed field k of characteristic p ≥ 0, and let P be a maximal proper parabolic subgroup of G. If p > 0, then we will assume that dimG/P ≤ p. Let ι : H ↪ G/P be a reduced smooth hypersurface in G/P of degree d. We will assume that the pullback homomorphism is an isomorphism (this assumption is automatically satisfied when dimH ≥ 3). We prove that the tangent bundle of H is stable if the two conditions τ(G/P) ≠ d and hold; here n = dimH, and τ(G/P) ∈ is the index of G/P which is defined by the identity = where L is the ample generator of Pic(G/P) and is the anti–canonical line bundle of G/P. If d = τ(G/P), then the tangent bundle TH is proved to be semistable. If p > 0, and then TH is strongly stable. If p > 0, and d = τ(G/P), then TH is strongly semistable.


1991 ◽  
Vol 122 ◽  
pp. 161-179 ◽  
Author(s):  
Yoshifumi Takeda

Let f: V → C be a fibration from a smooth projective surface onto a smooth projective curve over an algebraically closed field k. In the case of characteristic zero, almost all fibres of f are nonsingular. In the case of positive characteristic, it is, however, known that there exist fibrations whose general fibres have singularities. Moreover, it seems that such fibrations often have pathological phenomena of algebraic geometry in positive characteristic (see M. Raynaud [7], W. Lang [4]).


2019 ◽  
Vol 99 (2) ◽  
pp. 195-202
Author(s):  
LINGGUANG LI

Let $X$ be a smooth projective curve of genus $g\geq 2$ over an algebraically closed field $k$ of characteristic $p>0$. We show that for any integers $r$ and $d$ with $0<r<p$, there exists a maximally Frobenius destabilised stable vector bundle of rank $r$ and degree $d$ on $X$ if and only if $r\mid d$.


2008 ◽  
Vol 190 ◽  
pp. 105-128 ◽  
Author(s):  
Russell Fowler ◽  
Gerhard Röhrle

Let G be a connected reductive linear algebraic group defined over an algebraically closed field of characteristic p. Assume that p is good for G. In this note we consider particular classes of connected reductive subgroups H of G and show that the cocharacters of H that are associated to a given nilpotent element e in the Lie algebra of H are precisely the cocharacters of G associated to e that take values in H. In particular, we show that this is the case provided H is a connected reductive subgroup of G of maximal rank; this answers a question posed by J. C. Jantzen.


Author(s):  
Moshe Kamensky ◽  
Sergei Starchenko ◽  
Jinhe Ye

Abstract We consider G, a linear algebraic group defined over $\Bbbk $ , an algebraically closed field (ACF). By considering $\Bbbk $ as an embedded residue field of an algebraically closed valued field K, we can associate to it a compact G-space $S^\mu _G(\Bbbk )$ consisting of $\mu $ -types on G. We show that for each $p_\mu \in S^\mu _G(\Bbbk )$ , $\mathrm {Stab}^\mu (p)=\mathrm {Stab}\left (p_\mu \right )$ is a solvable infinite algebraic group when $p_\mu $ is centered at infinity and residually algebraic. Moreover, we give a description of the dimension of $\mathrm {Stab}\left (p_\mu \right )$ in terms of the dimension of p.


2014 ◽  
Vol 10 (08) ◽  
pp. 2187-2204
Author(s):  
Hsiu-Lien Huang ◽  
Chia-Liang Sun ◽  
Julie Tzu-Yueh Wang

Over the function field of a smooth projective curve over an algebraically closed field, we investigate the set of S-integral elements in a forward orbit under a rational function by establishing some analogues of the classical Siegel theorem.


2019 ◽  
Vol 30 (12) ◽  
pp. 1950067
Author(s):  
Manish Kumar ◽  
A. J. Parameswaran

We define formal orbifolds over an algebraically closed field of arbitrary characteristic as curves together with some branch data. Their étale coverings and their fundamental groups are also defined. These fundamental groups approximate the fundamental group of an appropriate affine curve. We also define vector bundles on these objects and the category of orbifold bundles on any smooth projective curve. Analogues of various statements about vector bundles which are true in characteristic zero are also proved. Some of these are positive characteristic avatars of notions which appear in the second author’s work [A. J. Parmeswaran, Parabolic coverings I: Case of curves, J. Ramanujam Math. Soc. 25(3) (2010) 233–251.] in characteristic zero.


2008 ◽  
Vol 144 (4) ◽  
pp. 849-866 ◽  
Author(s):  
T. Chinburg ◽  
R. Guralnick ◽  
D. Harbater

AbstractLet k be an algebraically closed field of positive characteristic p. We consider which finite groups G have the property that every faithful action of G on a connected smooth projective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have this property. We show that if a cyclic-by-p group G has this property, then G must be either cyclic or dihedral, with the exception of A4 in characteristic two. This proves one direction of a strong form of the Oort conjecture.


2016 ◽  
Vol 19 (1) ◽  
pp. 235-258 ◽  
Author(s):  
David I. Stewart

Let $G$ be a simple simply connected exceptional algebraic group of type $G_{2}$, $F_{4}$, $E_{6}$ or $E_{7}$ over an algebraically closed field $k$ of characteristic $p>0$ with $\mathfrak{g}=\text{Lie}(G)$. For each nilpotent orbit $G\cdot e$ of $\mathfrak{g}$, we list the Jordan blocks of the action of $e$ on the minimal induced module $V_{\text{min}}$ of $\mathfrak{g}$. We also establish when the centralizers $G_{v}$ of vectors $v\in V_{\text{min}}$ and stabilizers $\text{Stab}_{G}\langle v\rangle$ of $1$-spaces $\langle v\rangle \subset V_{\text{min}}$ are smooth; that is, when $\dim G_{v}=\dim \mathfrak{g}_{v}$ or $\dim \text{Stab}_{G}\langle v\rangle =\dim \text{Stab}_{\mathfrak{g}}\langle v\rangle$.


Sign in / Sign up

Export Citation Format

Share Document