In vitro differentiation of chicken spermatogonial stem cells into adipocytes

2008 ◽  
Vol 5 (3) ◽  
pp. 263-268
Author(s):  
Yu Fei ◽  
Ge Jian-Hui ◽  
Ni Li-Gang ◽  
He Xian-Hong ◽  
Xu Qi ◽  
...  

AbstractSpermatogonial stem cells (SSCs), which were isolated from chicken (Gallus gallus) embryo testes 16 days after laying, were cultured, subcultured, and induced into adipocytes in vitro. The differentiated cells were identified by oil red-O staining. Dexamethasone, insulin and 3-isobutyl-1-methylxanthine (IBMX) were tested for their induction potential. About 7–21 days after induction, SSCs differentiated into adipocytes, and the resulting adipocytes strongly expressed peroxisome proliferation activation receptor-γ (PPAR-γ). The assay outcome showed that an optimal treatment consisted of dexamethasone, insulin and IBMX application for 3 days and insulin for 1 day (3 cycles), then insulin for 21 days. The differentiation ratio was 85%, better than the combined use of dexamethasone, insulin and IBMX (P<0.01). However, the combination of the three derivatives triggered a stronger induction than any of them used alone (P<0.01). This study has demonstrated the potential of chicken embryonic SSCs to differentiate in vitro into adipocytes.

Cells ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 1000
Author(s):  
Adeline Bataille ◽  
Raphael Leschiera ◽  
Killian L’Hérondelle ◽  
Jean-Pierre Pennec ◽  
Nelig Le Goux ◽  
...  

Skin-derived precursor cells (SKPs) are neural crest stem cells that persist in certain adult tissues, particularly in the skin. They can generate a large type of cell in vitro, including neurons. SKPs were induced to differentiate into sensory neurons (SNs) by molecules that were previously shown to be important for the generation of SNs: purmorphamine, CHIR99021, BMP4, GDNF, BDNF, and NGF. We showed that the differentiation of SKPs induced the upregulation of neurogenins. At the end of the differentiation protocol, transcriptional analysis was performed on BRN3A and a marker of pain-sensing nerve cell PRDM12 genes: 1000 times higher for PRDM12 and 2500 times higher for BRN3A in differentiated cells than they were in undifferentiated SKPs. Using immunostaining, we showed that 65% and 80% of cells expressed peripheral neuron markers BRN3A and PERIPHERIN, respectively. Furthermore, differentiated cells expressed TRPV1, PAR2, TRPA1, substance P, CGRP, HR1. Using calcium imaging, we observed that a proportion of cells responded to histamine, SLIGKV (a specific agonist of PAR2), polygodial (a specific agonist of TRPA1), and capsaicin (a specific agonist of TRPV1). In conclusion, SKPs are able to differentiate directly into functional SNs. These differentiated cells will be very useful for further in vitro studies.


PLoS ONE ◽  
2015 ◽  
Vol 10 (2) ◽  
pp. e0116660 ◽  
Author(s):  
Brahim Arkoun ◽  
Ludovic Dumont ◽  
Jean-Pierre Milazzo ◽  
Agathe Way ◽  
Amandine Bironneau ◽  
...  

2021 ◽  
Author(s):  
Yangge Du ◽  
Yunsong Liu ◽  
Yongsheng Zhou ◽  
Ping Zhang

Abstract Background: Bone is a rigid organ that provides support and physical protection to vital organs of the body. Several bone loss disorders are commonly associated with increased bone marrow adipose tissue. Bone marrow mesenchymal stromal/stem cells (BMSCs) are multipotent progenitors differentiating into osteoblasts, adipocytes, and chondrocytes. CDC20 is a co-activator of APC/C, required for full ubiquitin ligase activity. In our previous study, CDC20 promoted the osteogenic commitment of BMSCs and Cdc20 conditional knockout mice suggested a decline in bone mass. In this study, we investigated the function of CDC20 in the adipogenic differentiation of BMSCs and provided a new clue between adipogenesis and osteogenesis. Methods: Lentivirus containing CDC20 shRNA was used for CDC20 knockdown in hBMSCs. Primary mBMSCs were isolated from Cdc20f/f and Sp7-Cre;Cdc20f/f mice. Adipogenesis was examined by qRT-PCR and western blot analysis of adipogenic regulators, Oil Red O staining and transplantation into nude mice. The CDC20 knockout efficiency was determined through immunochemistry, qRT-PCR and western blot of bone marrow. Accumulation of adiposity was measured through histology and staining of bone sections. Results: CDC20 expression in hBMSCs was significantly decreased during adipogenic differentiation. Knockdown of CDC20 enhanced adipogenic differentiation of hBMSCs in vitro. CDC20-knockdown hBMSCs showed more adipose tissue–like constructs in H&E staining and Oil Red O staining. Sp7-Cre;Cdc20f/f mice presented increased adipocytes in bone marrow compared with control mice. mBMSCs from Sp7-Cre;Cdc20f/f mice exerted upregulated adipogenic differentiation. Conclusions: Our findings showed that knockdown of CDC20 enhanced adipogenesis of h(m)BMSCs in vitro and in vivo. Overall, CDC20 regulated both adipogenesis and osteogenesis of BMSCs, and may lead to the development of new therapeutic target for “fatty bone” and osteoporosis.


2017 ◽  
Vol 197 (4S) ◽  
Author(s):  
Kara E. McAbee ◽  
Nima Pourhabibi Zarandi ◽  
Anthony Atala ◽  
Hooman Sadri-Ardekani ◽  
Colin Bishop

2015 ◽  
Vol 16 (11) ◽  
pp. 26333-26346 ◽  
Author(s):  
Xiaoyan Wang ◽  
Tingfeng Chen ◽  
Yani Zhang ◽  
Bichun Li ◽  
Qi Xu ◽  
...  

2018 ◽  
Vol 19 (5) ◽  
pp. 592 ◽  
Author(s):  
Huimin Zhao ◽  
Junyu Nie ◽  
Xiangxing Zhu ◽  
Yangqing Lu ◽  
Xingwei Liang ◽  
...  

2012 ◽  
Vol 24 (1) ◽  
pp. 217 ◽  
Author(s):  
W. J. Lee ◽  
G. H. Maeng ◽  
R. H. Jeon ◽  
G. J. Rho ◽  
S. L. Lee

Mesenchymal stem cells (MSC) are a valuable cell source for cartilage tissue engineering because MSC derived from various tissues readily differentiate into skeletal cell and chondrogenic lineages. In this study, we compared the cellular characteristics of synovium (SN) and synovial fluid (SF)-derived MSC with bone marrow (BM)-derived MSC of miniature pig. Biopsies of SN and BM were collected and SF was flushed with saline solution from 6-month-old miniature pig (T-type, PWG Micro-pig, PWG Genetics Korea, South Korea). Cells were isolated from collected tissues and cultured in advanced-DMEM supplemented with 10% fetal bovine serum at 38.5°C in a humidified atmosphere of 5% CO2 in air. The cells were then evaluated for their expression of MSC-specific markers, including CD29, CD44 and CD90 using flow cytometry. The expression of early transcriptional factors, such as Oct3/4, Nanog and Sox2 was evaluated by immunocytochemical staining and reverse transcription-PCR (RT-PCR). Multilineage differentiation of MSC were induced under conditions conductive for osteogenic, adipogenic and chondrogenic lineages and then evaluated by von Kossa and Alizarin Red S staining, Oil red O staining and Alcian Blue staining, respectively. Differentiated cells were further analysed for the expression of lineage specific markers by RT-PCR. Statistical analysis was performed using one-way ANOVA by SPSS. The SN-, SF- and BM-MSC were observed to be positive for MSC specific markers, such as CD29 (99 ± 0.2, 96 ± 0.5 and 98 ± 0.2, respectively), CD44 (97 ± 0.3, 96 ± 0.6 and 98 ± 0.5, respectively) and CD90 (95 ± 0.5, 92 ± 0.2 and 96 ± 0.3, respectively); however, haematopoietic marker CD45 (2.0 ± 2.1, 3.0 ± 1.3 and 2.0 ± 3.0, respectively) was barely detected. In all MSC, early transcription factors (Oct3/4, Nanog and Sox2) were expressed by immnocytochemical staining and the transcripts were detected by RT-PCR. Following exposure to the specific differentiation medium, all these MSC were capable of differentiating into mesenchymal lineages, such as osteogenic, adiopogenic and chondrogenic as assessed by von Kossa and Alizarin Red S staining, Oil red O staining and and Alcian Blue staining, respectively. In addition, differentiated cells from all MSC expressed the marker genes specific to osteocytes (osteonectin, Runx2), adipocytes (aP2, PRAR-γ2) and chondrocytes (aggrecan, collagen type 2) by RT-PCR. The results of this study suggested that cells isolated from miniature pig articular tissues, such as SN and SF have similar characteristics of MSCs and their differentiation ability was comparable to BM-MSC. Hence, it is possible to establish MSCs from SN and SF as alternate sources during the biopsy of synovial tissues for arthritis diagnosis. Further studies are being carried out to evaluate their in vivo differentiation potential into chondrocytes. This study was supported by Rural Development Administration (grant No. 20110701-305-533-001-02-00) and National Research Foundation of Korea (grant No. 2011-0010252) of the Republic of Korea.


2014 ◽  
Vol 26 (1) ◽  
pp. 213
Author(s):  
A. Dubey ◽  
H. N. Malik ◽  
D. K. Singhal ◽  
S. Saugandhika ◽  
S. Boateng ◽  
...  

The present study was carried out for isolation of goat (Capra hircus) adipose-tissue-derived stem cells (gADSCs) from adipose tissue, their characterization, and in vitro differentiation of gADSCs into pancreatic islets-like cells by giving conditioned medium. Goat ADSCs were isolated from goat adipose tissue by the enzymatic digestion method and were enriched by filtering through a 41-μm filter. Thus, filtered cells resuspended in a cell culture flask containing growth enriching medium and cultured in 5% CO2 in air at 38.5°C. Goat ADSCs were characterised by amplification of mesenchymal stem cell specific markers i.e. CD29, CD34, CD44, CD90, and CD166 as positive markers and CD41 and CD71 as negative markers. Immunocytochemistry of mesenchymal stem cell was also carried out with specific markers CD44 and CD90. Goat ADSCs were further characterised by in vitro differentiating them into osteocytes, chondrocytes, and adipocytes. For in vitro differentiation of gADSCs into osteocytes gADSCs were supplemented with conditioned medium i.e. DMEM containing fetal bovine serum (FBS), dexamethazone, B-glycerol phosphate and L-ascorbic acid. Osteogenic differentiation was confirmed by positive Alizarin red S staining and amplification of Osteopontin and Collagen I genes. For differentiation into chondrocytes cells, gADSCs were incubated in DMEM/F12 containing dexamethazone, ITX, BMP-4, and FBS for 21 days. Differentiated cells were confirmed by positive Safranin O staining and expression of chondrocytes specific Collagen III and Aggrecan genes. For adipogenesis, gADSCs were incubated with DMEM/F12 containing FBS, dexamethasone, and ITX and differentiated cells were confirmed by positive Oil Red O staining and amplification of adipocytes specific genes i.e. LPL, PPRγ and PPRα. For in-vitro differentiation gADSCs into pancreatic islets-like cells on the third or fourth passage gADSCs were incubated in conditioned medium containing serum-free DMEM/F12 medium with glucose (17.5 mM) in the presence of nicotinamide (10 mM), activin-A (2 nM), exendin-4 (10 nM), pentagastrin (10 nM), retinoic acid (10 μM) and mercaptoethanol (20 μM). The in vitro differentiation gADSCs into pancreatic islets-like cells was confirmed by amplification of pancreatic endoderm specific genes i.e. igf-1, sst, ngn3, pdx-1, isl-1, c-kit, thy-1, and Glut-2, and no expression was detected for above endoderm specific genes in undifferentiated gADSCs. Pancreatic islets-like cells were further characterised by immunostaining and Western blotting of Pdx-1, insulin, and Islets-1 specific protein. It could be concluded that gADSCs was differentiated into different lineages and secretory insulin was produced from pancreatic islets-like cells.


Sign in / Sign up

Export Citation Format

Share Document