Genetic diversity of Dioscorea japonica germplasm in Taiwan revealed by inter-simple sequence repeat DNA markers

2015 ◽  
Vol 14 (3) ◽  
pp. 211-218
Author(s):  
Tsai-Li Kung ◽  
Kuan-Hung Lin ◽  
Shun-Fu Lin

There are three native varieties of edible yams (Dioscorea japonica Thunb.) in Taiwan, but germplasm has been collected from only a few. To assess the genetic diversity of 99 accessions collected from four geographically diverse regions, inter-simple sequence repeat (ISSR) DNA markers were analysed, and 90.2% of the polymorphic markers in these accessions were found. Genetic similarity among accessions ranged from 30.8 to 74.4%, averaging 48.4%. Cluster analyses revealed four main clusters plus one outlier (Dioscorea alata L.). The varieties oldhamii and pseudojaponica were separated into different clusters and var. japonica was grouped with both varieties. Since var. japonica was found to be genetically similar to var. oldhamii and var. pseudojaponica, we suggest that var. japonica is a hybrid or intermediate variety between the two varieties. Molecular analysis of variance results indicated that variation within counties (95.94%) was predominantly greater than variation among counties (3.63%) and among regions (0.43%). Overall, gene flow (Nm= 0.970) estimated from genetic differentiation (Gst= 0.340) suggests that gene flow among regions is relatively high. The highest genetic diversity (H= 0.191) and Shannon's index (I= 0.312), and a high gene flow (Nm= 3.926) of germplasm in the northern region suggest that this region is a possible centre of dispersal and domestication of yams in Taiwan. This study provided valuable information for germplasm collection and genetic improvement.

2019 ◽  
Vol 51 (5) ◽  
Author(s):  
Huifang Cao ◽  
Qiang Lin ◽  
Peiwang Li ◽  
Jingzhen Chen ◽  
Changzhu Li ◽  
...  

Plants ◽  
2019 ◽  
Vol 8 (11) ◽  
pp. 471
Author(s):  
Jae-Ryoung Park ◽  
Won-Tae Yang ◽  
Yong-Sham Kwon ◽  
Hyeon-Nam Kim ◽  
Kyung-Min Kim ◽  
...  

The assessment of the genetic diversity within germplasm collections can be accomplished using simple sequence repeat (SSR) markers and association mapping techniques. The present study was conducted to evaluate the genetic diversity of a colored rice germplasm collection containing 376 black-purple rice samples and 172 red pericarp samples, conserved by Dong-A University. There were 600 pairs of SSR primers screened against 11 rice varieties. Sixteen informative primer pairs were selected, having high polymorphism information content (PIC) values, which were then used to assess the genetic diversity within the collection. A total of 409 polymorphic amplified fragments were obtained using the 16 SSR markers. The number of alleles per locus ranged from 11 to 47, with an average of 25.6. The average PIC value was 0.913, ranging from 0.855 to 0.964. Four hundred and nine SSR loci were used to calculate Jaccard’s distance coefficients, using the unweighted pair-group method with arithmetic mean cluster analysis. These accessions were separated into several distinctive groups corresponding to their morphology. The results provided valuable information for the colored rice breeding program and showed the importance of protecting germplasm resources and the molecular markers that can be derived from them.


2019 ◽  
Vol 20 (8) ◽  
Author(s):  
Ni Luh Arpiwi ◽  
I Gusti Ayu Sugi Wahyuni ◽  
I Ketut Muksin

Abstract. Arpiwi NL, Wahyuni IGAS, Muksin IK. 2019. Genetic diversity of Pongamia pinnata in Bali, Indonesia using Inter Simple Sequence Repeat markers. Biodiversitas 20: 2134-2142. Pongamia pinnata (L.) Pierre is a member of family Leguminosae that produces seed oil for biodiesel feedstock. The aim of the present study was to determine genetic diversity of pongamia trees that grow in Bali using Inter Simple Sequence Repeat (ISSR) markers. This study is important to support the breeding program for the improvement of the biodiesel producing species. Leaf samples were taken from 26 pongamia trees grown on northern and southern coastal areas of Bali. Genomic DNA was isolated from fresh leaves sample and was amplified by Polymerase Chain Reaction (PCR) using 9 ISSR primers. The banding patterns of DNA after PCR were scored and tabulated into a binary matrix. Genetic distance was generated by pairwise distance using composite maximum likelihood. A dendrogram was constructed using Unweighted Pair Group Method Arithmetic (UPGMA) method. The binary matrix was further analyzed for Nonmetric Multidimensional Scaling (NMDS) with Primer E V.6 software. DNA concentrations ranged from 98.59-100.55 ng/μL with sufficient quality for PCR. The number of alleles for 9 primers was 43, the number of the polymorphic band was 35, and the number of monomorphic bands was 8. Percentage of polymorphism ranged from 50 to 100%. Cluster analysis of 26 DNA of pongamia trees showed that the trees were grouped into two, namely group I and II. Group I consisted of two trees only, namely Uma Anyar 1 and Penarukan 1. Group II consisted of 24 pongamia trees which were divided into 3 subgroups, namely IIA, IIB, and IIC with close genetic distance. Analysis of NMDS supported cluster analysis that 23 out of 26 pongamia trees had close genetic distance, and possibly they come from a similar source. Genetic diversity of pongamia in Bali needs to be widen possibly by the introduction of new planting materials from across Indonesia or seed procurement from different sources.


Sign in / Sign up

Export Citation Format

Share Document