scholarly journals Latitudinal Distribution of the Coronal Bright Points at Solar Minimum and the Rising Phase of Solar Activity Cycle 23

2004 ◽  
Vol 2004 (IAUS223) ◽  
pp. 665-666
Author(s):  
I. Sattarov ◽  
A.A. Pevtsov ◽  
N.V. Karachek ◽  
A.M. Tillaboev
1998 ◽  
Vol 167 ◽  
pp. 484-487 ◽  
Author(s):  
M. Minarovjech ◽  
M. Rybanský ◽  
V. Rušin

AbstractWe present a distribution of prominences over the solar cycle activity. There are found both polar and equatorial branches of prominences that migrate in opposite directions. Prominences of the high-latitude crown migrate, starting in the minimum of the cycle, towards the poles, which they reach at the maximum of the cycle and then decay. The equatorward-migrating branch of prominences appears also in the minimum of the cycle at mid-latitudes and disappears at the end of the cycle. The distribution of the prominences is compared with a time-latitudinal distribution of the green corona. It is assumed that the polar branches in cycle 23 will reach the poles in 2002 (the north pole) and 2003 (the south one), respectively.


2004 ◽  
Vol 2004 (IAUS223) ◽  
pp. 667-668 ◽  
Author(s):  
I. Sattarov ◽  
A.A. Pevtsov ◽  
N.V. Karachek ◽  
Ch.T. Sherdanov

2020 ◽  
Vol 60 (5) ◽  
pp. 586-596 ◽  
Author(s):  
A. D. Danilov ◽  
A. V. Konstantinova

Solar Physics ◽  
2021 ◽  
Vol 296 (1) ◽  
Author(s):  
V. Courtillot ◽  
F. Lopes ◽  
J. L. Le Mouël

AbstractThis article deals with the prediction of the upcoming solar activity cycle, Solar Cycle 25. We propose that astronomical ephemeris, specifically taken from the catalogs of aphelia of the four Jovian planets, could be drivers of variations in solar activity, represented by the series of sunspot numbers (SSN) from 1749 to 2020. We use singular spectrum analysis (SSA) to associate components with similar periods in the ephemeris and SSN. We determine the transfer function between the two data sets. We improve the match in successive steps: first with Jupiter only, then with the four Jovian planets and finally including commensurable periods of pairs and pairs of pairs of the Jovian planets (following Mörth and Schlamminger in Planetary Motion, Sunspots and Climate, Solar-Terrestrial Influences on Weather and Climate, 193, 1979). The transfer function can be applied to the ephemeris to predict future cycles. We test this with success using the “hindcast prediction” of Solar Cycles 21 to 24, using only data preceding these cycles, and by analyzing separately two 130 and 140 year-long halves of the original series. We conclude with a prediction of Solar Cycle 25 that can be compared to a dozen predictions by other authors: the maximum would occur in 2026.2 (± 1 yr) and reach an amplitude of 97.6 (± 7.8), similar to that of Solar Cycle 24, therefore sketching a new “Modern minimum”, following the Dalton and Gleissberg minima.


2009 ◽  
Vol 5 (S264) ◽  
pp. 33-38
Author(s):  
Hiromoto Shibahashi

AbstractThe brilliant outcome of some 30 years of helioseismology spreads over a wide range of topics. Some highlights relevant to the cause of the solar activity cycle are listed up. The rotation profile in the solar convective zone is discussed as an important source of the dynamo mechanism. The kinematic dynamo model is described in the linear approximation, and the condition for the solar type dynamo is derived. It is shown that comparison of this condition with the rotation profile determined from helioseismology is useful to identify the possible seats of the dynamo.


Sign in / Sign up

Export Citation Format

Share Document