equivalent width
Recently Published Documents


TOTAL DOCUMENTS

254
(FIVE YEARS 46)

H-INDEX

24
(FIVE YEARS 5)

2021 ◽  
Vol 923 (1) ◽  
pp. 18
Author(s):  
Michael V. Maseda ◽  
Arjen van der Wel ◽  
Marijn Franx ◽  
Eric F. Bell ◽  
Rachel Bezanson ◽  
...  

Abstract Using deep rest-frame optical spectroscopy from the Large Early Galaxy Astrophysical Census (LEGA-C) survey, conducted using VIMOS on the ESO Very Large Telescope, we search for low-ionization [O ii] λ λ 3726,3729 emission in the spectra of a mass-complete sample of z ≈ 0.85 galaxies. We find that 59% of UVJ-quiescent (i.e., non-star-forming) galaxies in the sample have [O ii] emission detected above our completeness limit of 1.5 Å, and the median-stacked spectrum of the remaining sample also shows [O ii] emission. The overall fraction of sources with [O ii] above our equivalent width limit is comparable to what we find in the low-redshift universe from GAMA and MASSIVE, except perhaps at the highest stellar masses (>1011.5 M ⊙). However, stacked spectra for the individual low-equivalent-width systems uniquely indicates ubiquitous [O ii] emission in the higher-z LEGA-C sample, with typical [O ii] luminosities per unit stellar mass that are a factor of ×3 larger than the lower-z GAMA sample. Star formation at higher-z could play a role in producing the [O ii] emission, although it is unlikely to provide the bulk of the ionizing photons. More work is required to fully quantify the contributions of evolved stellar populations or active galactic nuclei to the observed spectra.


2021 ◽  
Vol 2 (1) ◽  
pp. 21-25
Author(s):  
M.I. Fursyak ◽  
O.V. Kozlova

We present the results of long-term high-dispersion spectral observations (R = 20000) of the Ae Herbig star HD 36112 in the regions of the Ha emission line and the NaI D resonance doublet lines. They show that parameters of the Ha emission line demonstrate complicated variability on several time scales: 1) variability from night to night caused by inhomogeneity of the circumstellar envelope; 2) variability on a time scale of about 1200d characterized by a variation of the equivalent width, intensity, and other emission parameters; 3) variability on a time scale of more than 4000d observed as a many-year trend in variations of parameters of the Ha emission line. We associate these results with variability of physical and kinematic conditions in the inner regions of the accretion disk and wind. The most probable mechanism of this variability is a process of planet formation in the circumstellar disk.


Author(s):  
U Meštrić ◽  
E V Ryan-Weber ◽  
J Cooke ◽  
R Bassett ◽  
L J Prichard ◽  
...  

Abstract In this work, we investigate upper limits on the global escape fraction of ionizing photons ($f_{\rm esc/global}^{\rm abs}$) from a sample of galaxies probed for Lyman-continuum (LyC) emission characterized as non-LyC and LyC leakers. We present a sample of 9 clean non-contaminated (by low redshift interlopers, CCD problems and internal reflections of the instrument) galaxies which do not show significant (> 3σ) LyC flux between 880Å <λrest < 910Å. The 9 galaxy stacked spectrum reveals no significant LyC flux with an upper limit of $f_{\rm esc}^{\rm abs} \le 0.06$. In the next step of our analysis, we join all estimates of $f_{\rm esc}^{\rm abs}$ upper limits derived from different samples of 2 ≲ z < 6 galaxies from the literature reported in last ∼20 years and include the sample presented in this work. We find the $f_{\rm esc}^{\rm abs}$ upper limit ≤ 0.084 for the galaxies recognized as non-LyC leakers. After including all known detections from literature $f_{\rm esc/global}^{\rm abs}$ upper limit ≤ 0.088 for all galaxies examined for LyC flux. Furthermore, $f_{\rm esc}^{\rm abs}$ upper limits for different groups of galaxies indicate that the strongest LyC emitters could be galaxies classified as Lyman alpha emitters. We also discuss the possible existence of a correlation among the observed flux density ratio $(F_{\nu }^{LyC}/F_{\nu }^{UV})_{\rm obs}$ and Lyman alpha equivalent width EW(Lyα), where we confirm the existence of moderately significant correlation among galaxies classified as non-LyC leakers.


Author(s):  
Joris Witstok ◽  
Renske Smit ◽  
Roberto Maiolino ◽  
Mirko Curti ◽  
Nicolas Laporte ◽  
...  

Abstract We present a detailed spectroscopic analysis of a galaxy at z ≃ 4.88 that is, by chance, magnified ∼30 × by gravitational lensing. Only three sources at z ≳ 5 are known with such high magnification. This particular source has been shown to exhibit widespread, high equivalent width ${\rm C\, {\small IV}}\, \lambda \, 1549$ emission, implying it is a unique example of a metal-poor galaxy with a hard radiation field, likely representing the galaxy population responsible for cosmic reionisation. Using UV nebular line ratio diagnostics, VLT/X-shooter observations rule out strong AGN activity, indicating a stellar origin of the hard radiation field instead. We present a new detection of ${[\rm Ne\, {\small III}]}\, \lambda \, 3870$ and use the [Ne iii]/[O ii] line ratio to constrain the ionisation parameter and gas-phase metallicity. Closely related to the commonly used [O iii]/[O ii] ratio, our [Ne iii]/[O ii] measurement shows this source is similar to local “Green Pea” galaxies and Lyman-continuum leakers. It furthermore suggests this galaxy is more metal poor than expected from the Fundamental Metallicity Relation, possibly as a consequence of excess gas accretion diluting the metallicity. Finally, we present the highest redshift detection of ${\rm Mg\, {\small II}}\, \lambda \, 2796$, observed at high equivalent width in emission, in contrast to more evolved systems predominantly exhibiting Mg ii absorption. Strong Mg ii emission has been observed in most z ∼ 0 Lyman-continuum leakers known and has recently been proposed as an indirect tracer of escaping ionising radiation. In conclusion, this strongly lensed galaxy, observed just 300 Myr after reionisation ends, enables testing of observational diagnostics proposed to constrain the physical properties of distant galaxies in the JWST/ELT era.


2021 ◽  
Vol 503 (4) ◽  
pp. 5115-5133
Author(s):  
A A Khostovan ◽  
S Malhotra ◽  
J E Rhoads ◽  
S Harish ◽  
C Jiang ◽  
...  

ABSTRACT The H α equivalent width (EW) is an observational proxy for specific star formation rate (sSFR) and a tracer of episodic, bursty star-formation activity. Previous assessments show that the H α EW strongly anticorrelates with stellar mass as M−0.25 similar to the sSFR – stellar mass relation. However, such a correlation could be driven or even formed by selection effects. In this study, we investigate how H α EW distributions correlate with physical properties of galaxies and how selection biases could alter such correlations using a z = 0.47 narrow-band-selected sample of 1572 H α emitters from the Ly α Galaxies in the Epoch of Reionization (LAGER) survey as our observational case study. The sample covers a 3 deg2 area of COSMOS with a survey comoving volume of 1.1 × 105 Mpc3. We assume an intrinsic EW distribution to form mock samples of H α emitters and propagate the selection criteria to match observations, giving us control on how selection biases can affect the underlying results. We find that H α EW intrinsically correlates with stellar mass as W0∝M−0.16 ± 0.03 and decreases by a factor of ∼3 from 107 M⊙ to 1010 M⊙, while not correcting for selection effects steepens the correlation as M−0.25 ± 0.04. We find low-mass H α emitters to be ∼320 times more likely to have rest-frame EW>200 Å compared to high-mass H α emitters. Combining the intrinsic W0–stellar mass correlation with an observed stellar mass function correctly reproduces the observed H α luminosity function, while not correcting for selection effects underestimates the number of bright emitters. This suggests that the W0–stellar mass correlation when corrected for selection effects is physically significant and reproduces three statistical distributions of galaxy populations (line luminosity function, stellar mass function, EW distribution). At lower stellar masses, we find there are more high-EW outliers compared to high stellar masses, even after we take into account selection effects. Our results suggest that high sSFR outliers indicative of bursty star formation activity are intrinsically more prevalent in low-mass H α emitters and not a byproduct of selection effects.


2021 ◽  
Vol 503 (3) ◽  
pp. 4105-4117
Author(s):  
Mengtao Tang ◽  
Daniel P Stark ◽  
Jacopo Chevallard ◽  
Stéphane Charlot ◽  
Ryan Endsley ◽  
...  

ABSTRACT Spectroscopic observations of massive z > 7 galaxies selected to have extremely large [O iii] + H β equivalent width (EW ∼1500 Å) have recently revealed large Ly α detection rates, in contrast to the weak emission seen in the general population. Why these systems are uniquely visible in Ly α at redshifts where the intergalactic medium (IGM) is likely significantly neutral is not clear. With the goal of better understanding these results, we have begun a campaign with MMT and Magellan to measure Ly α in galaxies with similar [O iii] + H β EWs at z ≃ 2–3. At these redshifts, the IGM is highly ionized, allowing us to clearly disentangle how the Ly α properties depend on the [O iii] + H β EW. Here, we present Ly α EWs of 49 galaxies at z = 2.2–3.7 with intense [O iii] + H β line emission (EW = 300–3000 Å). Our results demonstrate that strong Ly α emission (EW >20 Å) becomes more common in galaxies with larger [O iii] + H β EW, reflecting a combination of increasingly efficient ionizing photon production and enhanced transmission of Ly α. Among the galaxies with the most extreme [O iii] + H β emission (EW ∼1500 Å), we find that strong Ly α emission is not ubiquitous, with only 50 per cent of our population showing Ly α EW >20 Å. Our data suggest that the range of Ly α strengths is related to the observed ellipticity, with those systems that appear edge-on or elongated having weaker Ly α emission. We use these results to interpret the anomalous Ly α properties seen in z > 7 galaxies with extreme [O iii] + H β emission and discuss implications for the escape of ionizing radiation from these extreme line emitting galaxies.


Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 418
Author(s):  
Nehad Ali Shah ◽  
Ioannis Dassios ◽  
Jae Dong Chung

The present research article is related to the analytical investigation of some fractional-order equal-width equations. The homotopy perturbation technique along with Elzaki transformation is implemented to discuss the fractional view analysis of equal-width equations. For better understanding of the proposed procedure some examples related to equal-width equations are presented. The identical behavior of the derived and actual solutions is observed. The proposed technique can be modified to study the fractional view analysis of other problems in various areas of applied sciences.


2021 ◽  
Vol 503 (1) ◽  
pp. 1345-1366
Author(s):  
David V Stark ◽  
Karen L Masters ◽  
Vladimir Avila-Reese ◽  
Rogemar Riffel ◽  
Rogerio Riffel ◽  
...  

ABSTRACT We present the second data release for the H i-MaNGA programme of H i follow-up observations for the SDSS-IV MaNGA survey. This release contains measurements for 3669 unique galaxies, combining 2108 Green Bank Telescope observations with an updated crossmatch of the MaNGA sample with the ALFALFA survey. We combine these data with MaNGA spectroscopic measurements to examine relationships between H i-to-stellar mass ratio (${\rm M_{H\, {\small I}}/{M_*}}$) and average ISM/star formation properties probed by optical emission lines. ${\rm M_{H\, {\small I}}/{M_*}}$ is very weakly correlated with the equivalent width of H α, implying a loose connection between the instantaneous star formation rate and the H i reservoir, although the link between ${\rm M_{H\, {\small I}}/{M_*}}$ and star formation strengthens when averaged even over only moderate time-scales (∼30 Myr). Galaxies with elevated H i depletion times have enhanced [O i]/H α and depressed H α surface brightness, consistent with more H i residing in a diffuse and/or shock-heated phase that is less capable of condensing into molecular clouds. Of all optical lines, ${\rm M_{H\, {\small I}}/{M_*}}$ correlates most strongly with oxygen equivalent width, EW(O), which is likely a result of the existing correlation between ${\rm M_{H\, {\small I}}/{M_*}}$ and gas-phase metallicity. Residuals in the ${\rm M_{H\, {\small I}}/{M_*}}$−EW(O) relation are again correlated with [O i]/H α and H α surface brightness, suggesting they are also driven by variations in the fraction of diffuse and/or shock-heated gas. We recover the strong anticorrelation between ${\rm M_{H\, {\small I}}/{M_*}}$ and gas-phase metallicity seen in previous studies. We also find a relationship between ${\rm M_{H\, {\small I}}/{M_*}}$ and [O i]6302/H α, suggesting that higher fractions of diffuse and/or shock-heated gas are more prevalent in gas-rich galaxies.


Author(s):  
G Sanjurjo-Ferrín ◽  
J M Torrejón ◽  
K Postnov ◽  
L Oskinova ◽  
J J Rodes-Roca ◽  
...  

Abstract Cen X-3 is a compact high mass X-ray binary likely powered by Roche lobe overflow. We present a phase-resolved X-ray spectral and timing analysis of two pointed XMM-Newton observations. The first one took place during a normal state of the source, when it has a luminosity LX ∼ 1036 erg s−1. This observation covered orbital phases φ = 0.00 − 0.37, i.e. the egress from the eclipse. The egress lightcurve is highly structured, showing distinctive intervals. We argue that different intervals correspond to the emergence of different emitting structures. The lightcurve analysis enables us to estimate the size of such structures around the compact star, the most conspicuous of which has a size ∼0.3R*, of the order of the Roche lobe radius. During the egress, the equivalent width of Fe emission lines, from highly ionized species, decreases as the X-ray continuum grows. On the other hand, the equivalent width of the Fe Kα line, from near neutral Fe, strengthens. This line is likely formed due to the X-ray illumination of the accretion stream. The second observation was taken when the source was 10 times X-ray brighter and covered the orbital phases φ = 0.36 − 0.80. The X-ray lightcurve in the high state shows dips. These dips are not caused by absorption but can be due to instabilities in the accretion stream. The typical dip duration, of about 1000 s, is much longer than the timescale attributed to the accretion of the clumpy stellar wind of the massive donor star, but is similar to the viscous timescale at the inner radius of the accretion disk.


Sign in / Sign up

Export Citation Format

Share Document