scholarly journals Nonthermal processes in microquasars

2010 ◽  
Vol 6 (S275) ◽  
pp. 215-223
Author(s):  
Valentí Bosch-Ramon

AbstractMicroquasars are X-ray binaries that show extended radio jets. These jets can accelerate particles up to relativistic energies that produce non-thermal emission from radio to TeV, and could also make a non-negligible contribution to the galactic CRs in some energy ranges. The orbital motion and compactness of these sources allow the study of high-energy astrophysical phenomena in extreme conditions that change in accessible timescales. In this work, I briefly discuss the production of broadband non-thermal emission in microquasars, putting special emphasis on the high- and the very high-energy bands.

2019 ◽  
Vol 489 (4) ◽  
pp. 5076-5086 ◽  
Author(s):  
K K Singh ◽  
B Bisschoff ◽  
B van Soelen ◽  
A Tolamatti ◽  
J P Marais ◽  
...  

ABSTRACT In this work, we present a multiwavelength study of the blazar 1ES 1218+304 using near simultaneous observations over 10 yr during the period 2008 September 1 to 2018 August 31 (MJD 54710–58361). We have analysed data from Swift-UVOT, Swift-XRT, and Fermi-LAT to study the long term behaviour of 1ES 1218+304 in different energy bands over the last decade. We have also used the archival data from OVRO, MAXI, and Swift-BAT available during the above period. The near simultaneous data on 1ES 1218+304 suggest that the long term multiwavelength emission from the source is steady and does not show any significant change in the source activity. The optical/UV fluxes are found to be dominated by the host galaxy emission and can be modelled using the pegase code. However, the time averaged X-ray and γ-ray emissions from the source are reproduced using a single zone leptonic model with log-parabolic distribution for the radiating particles. The intrinsic very high energy γ-ray emission during a low activity state of the source is broadly consistent with the predictions of the leptonic model for blazars. We have investigated the physical properties of the jet and the mass of the supermassive black hole at the centre of the host galaxy using long term X-ray observations from the Swift-XRT which is in agreement with the value derived using blackbody approximation of the host galaxy. We also discuss the extreme nature of the source on the basis of X-ray and γ-ray observations.


2021 ◽  
Vol 923 (2) ◽  
pp. 241
Author(s):  
C. B. Adams ◽  
W. Benbow ◽  
A. Brill ◽  
J. H. Buckley ◽  
M. Capasso ◽  
...  

Abstract The results of gamma-ray observations of the binary system HESS J0632 + 057 collected during 450 hr over 15 yr, between 2004 and 2019, are presented. Data taken with the atmospheric Cherenkov telescopes H.E.S.S., MAGIC, and VERITAS at energies above 350 GeV were used together with observations at X-ray energies obtained with Swift-XRT, Chandra, XMM-Newton, NuSTAR, and Suzaku. Some of these observations were accompanied by measurements of the Hα emission line. A significant detection of the modulation of the very high-energy gamma-ray fluxes with a period of 316.7 ± 4.4 days is reported, consistent with the period of 317.3 ± 0.7 days obtained with a refined analysis of X-ray data. The analysis of data from four orbital cycles with dense observational coverage reveals short-timescale variability, with flux-decay timescales of less than 20 days at very high energies. Flux variations observed over a timescale of several years indicate orbit-to-orbit variability. The analysis confirms the previously reported correlation of X-ray and gamma-ray emission from the system at very high significance, but cannot find any correlation of optical Hα parameters with fluxes at X-ray or gamma-ray energies in simultaneous observations. The key finding is that the emission of HESS J0632 + 057 in the X-ray and gamma-ray energy bands is highly variable on different timescales. The ratio of gamma-ray to X-ray flux shows the equality or even dominance of the gamma-ray energy range. This wealth of new data is interpreted taking into account the insufficient knowledge of the ephemeris of the system, and discussed in the context of results reported on other gamma-ray binary systems.


2008 ◽  
Vol 17 (10) ◽  
pp. 1849-1858 ◽  
Author(s):  
J. M. PAREDES

The detection of TeV gamma-rays from LS 5039 and the binary pulsar PSR B1259–63 by HESS, and from LS I +61 303 and the stellar-mass black hole Cygnus X-1 by MAGIC, provides clear evidence of very efficient acceleration of particles to multi-TeV energies in X-ray binaries. These observations demonstrate the richness of nonthermal phenomena in compact galactic objects containing relativistic outflows or winds produced near black holes and neutron stars. I review here some of the main observational results on very high energy (VHE) γ-ray emission from X-ray binaries, as well as some of the proposed scenarios to explain the production of VHE γ-rays. I put special emphasis on the flare TeV emission, suggesting that the flaring activity might be a common phenomena in X-ray binaries.


2008 ◽  
Author(s):  
Marc Ribó ◽  
Reba M. Bandyopadhyay ◽  
Stefanie Wachter ◽  
Dawn Gelino ◽  
Christopher R. Gelino

1990 ◽  
Vol 16 (12) ◽  
pp. 1773-1803 ◽  
Author(s):  
P M Chadwick ◽  
T J L McComb ◽  
K E Turver

Proceedings ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 9
Author(s):  
Ka-Wah Wong ◽  
Rodrigo S. Nemmen ◽  
Jimmy A. Irwin ◽  
Dacheng Lin

The nearby M87 hosts an exceptional relativistic jet. It has been regularly monitored in radio to TeV bands, but little has been done in hard X-rays ≳10 keV. For the first time, we have successfully detected hard X-rays up to 40 keV from its X-ray core with joint Chandra and NuSTAR observations, providing important insights to the X-ray origins: from the unresolved jet or the accretion flow. We found that the hard X-ray emission is significantly lower than that predicted by synchrotron self-Compton models introduced to explain very-high-energy γ -ray emission above a GeV. We discuss recent models to understand these high energy emission processes.


2019 ◽  
Vol 626 ◽  
pp. A65
Author(s):  
A. Petriella

Aims. HESS J1844-030 is a newly confirmed TeV source in the direction of the X-ray pulsar wind nebula (PWN) candidate G29.4+0.1 and the complex radio source G29.37+0.1, which is likely formed by the superposition of a background radio galaxy and a Galactic supernova remnant (SNR). Many scenarios have been proposed to explain the origin of HESS J1844-030, based on several sources that are capable of producing very high energy radiation. We investigate the possible connection between the SNR, the PWN G29.4+0.1, and HESS J1844-030 to shed light on the astrophysical origin of the TeV emission. Methods. We performed an imaging and spectral study of the X-ray emission from the PWN G29.4+0.1 using archival observations obtained with the Chandra and XMM-Newton telescopes. Public radio continuum and HI data were used to derive distance constraints for the SNR that is linked to G29.37+0.1 and to investigate the interstellar medium where it is expanding. We applied a simple model of the evolution of a PWN inside an SNR to analyze the association between G29.4+0.1 and the radio emission from G29.37+0.1. We compared the spectral properties of the system with the population of TeV PWNe to investigate if HESS J1844-030 is the very high energy counterpart of the X-ray PWN G29.4+0.1. Results. Based on the morphology and spectral behavior in the X-ray band, we conclude that G29.4+0.1 is a PWN and that a point source embedded on it is the powering pulsar. The HI data revealed that the SNR linked to G29.37+0.1 is a Galactic source at 6.5 kpc and expanding in a nonuniform medium. From the analysis of the pulsar motion and the pressure balance at the boundary of X-ray emission, we conclude that G29.4+0.1 could be a PWN that is located inside its host remnant, forming a new composite SNR. Based on the magnetic field of the PWN obtained from the X-ray luminosity, we found that the population of electrons producing synchrotron radiation in the keV band can also produce IC photons in the TeV band. This suggests that HESS J1844-030 could be the very high energy counterpart of G29.4+0.1.


2014 ◽  
Vol 798 (1) ◽  
pp. 27 ◽  
Author(s):  
Naoki Isobe ◽  
Ryosuke Sato ◽  
Yoshihiro Ueda ◽  
Masaaki Hayashida ◽  
Megumi Shidatsu ◽  
...  
Keyword(s):  
X Ray ◽  
Γ Ray ◽  

Sign in / Sign up

Export Citation Format

Share Document