scholarly journals Origin of the prestellar core mass function and link to the IMF – Herschel first results

2010 ◽  
Vol 6 (S270) ◽  
pp. 255-262 ◽  
Author(s):  
Ph. André ◽  
A. Men'shchikov ◽  
V. Könyves ◽  
D. Arzoumanian

AbstractWe briefly review ground-based (sub)millimeter dust continuum observations of the prestellar core mass function (CMF) and its connection to the stellar initial mass function (IMF). We also summarize the first results obtained on this topic from the Herschel Gould Belt survey, one of the largest key projects with the Herschel Space Observatory. Our early findings with Herschel confirm the existence of a close relationship between the CMF and the IMF. Furthermore, they suggest a scenario according to which the formation of prestellar cores occurs in two main steps: 1) complex networks of long, thin filaments form first, probably as a result of interstellar MHD turbulence; 2) the densest filaments then fragment and develop prestellar cores via gravitational instability.

2010 ◽  
Vol 6 (S270) ◽  
pp. 151-158
Author(s):  
Ralph E. Pudritz

AbstractWe review computational approaches to understanding the origin of the Initial Mass Function (IMF) during the formation of star clusters. We examine the role of turbulence, gravity and accretion, equations of state, and magnetic fields in producing the distribution of core masses - the Core Mass Function (CMF). Observations show that the CMF is similar in form to the IMF. We focus on feedback processes such as stellar dynamics, radiation, and outflows can reduce the accreted mass to give rise to the IMF. Numerical work suggests that filamentary accretion may play a key role in the origin of the IMF.


2018 ◽  
Vol 14 (S345) ◽  
pp. 328-329
Author(s):  
Gabor I. Herbst-Kiss ◽  
Joao Alves

AbstractThe initial mass function (IMF) is a profoundly studied subject, however its origin is still unclear and heavily disputed. The Core Mass Function (CMF) has a remarkable resemblance to a shifted IMF along the mass axis of a factor of 3. This CMF has been observed amongst others in the Pipe Nebula, a calm molecular cloud at approximately 130 pc. We study the origin of the CMF under the assumption that collisions and merging of prestellar cores shape the CMF. We present our preliminary results of core collisions for the well known FeSt 1-457.


2020 ◽  
Vol 635 ◽  
pp. A88
Author(s):  
S. Donkov ◽  
T. V. Veltchev ◽  
Ph. Girichidis ◽  
R. S. Klessen

The mass function of clumps observed in molecular clouds raises interesting theoretical issues, especially in its relation to the stellar initial mass function (IMF). We propose a statistical model of the mass function of prestellar cores (CMF), formed in self-gravitating isothermal clouds at a given stage of their evolution. The latter is characterized by the mass-density probability distribution function (ρ-PDF), which is a power-law with slope q. The different molecular clouds are divided into ensembles according to the PDF slope and each ensemble is represented by a single spherical cloud. The cores are considered as elements of self-similar structure typical for fractal clouds and are modeled by spherical objects populating each cloud shell. Our model assumes relations between size, mass, and density of the statistical cores. Out of these, a core mass-density relationship ρ ∝ mx is derived where x = 1∕(1 + q). We find that q determines the existence or nonexistence of a threshold density for core collapse. The derived general CMF is a power law of slope − 1 while the CMF of gravitationally unstable cores has a slope (−1 + x∕2), comparable with the slopes of the high-mass part of the stellar IMF and of observational CMFs.


2015 ◽  
Vol 11 (A29B) ◽  
pp. 708-708
Author(s):  
Philippe André ◽  
Vera Könyves ◽  
Arabindo Roy ◽  
Doris Arzoumanian

AbstractThe origin of the stellar initial mass function (IMF) is one of the most debated issues in astrophysics. Two major features of the IMF are 1) a fairly robust power-law slope at the high-mass end (Salpeter 1955), and 2) a broad peak around ~ 0.3 M⊙ corresponding to a characteristic stellar mass scale (cf. Elmegreen et al. 2008). In recent years, the dominant theoretical model proposed to account for these features has been the “gravo-turbulent fragmentation” picture (e.g., Hennebelle & Chabrier 2008; Hopkins 2012) whereby the properties of interstellar turbulence lead to the Salpeter power law and gravity sets the characteristic mass scale (Jeans mass). We discuss modifications to this picture based on extensive submillimeter continuum imaging observations of nearby molecular clouds with the Herschel Space Observatory which emphasize the importance of filamentary geometry (André et al. 2010; Könyves et al. 2015). The Herschel results point to the key role of the quasi-universal filamentary structure pervading the cold interstellar medium and support a scenario in which star formation occurs in two main steps (cf. André et al. 2014): first, the dissipation of kinetic energy in large-scale turbulent MHD flows generates ~ 0.1 pc-wide filaments (Arzoumanian et al. 2011) in the cold ISM; second, the densest filaments grow and fragment into prestellar cores (and ultimately protostars) by gravitational instability above a critical threshold ~ 16 M⊙/pc in mass per unit length or ~ 160 M⊙/pc2 in gas surface density (AV ∼ 8). In our observationally-driven scenario, the dense cores making up the peak of the prestellar core mass function (CMF) - likely responsible for the peak of the IMF - result from gravitational fragmentation of filaments near the critical threshold for global gravitational instability. The power-law tail of the CMF/IMF arises from the growth of the Kolmogorov-like power spectrum of initial density fluctuations [P(k) ∝ k−1.6±0.3] measured along Herschel filaments (Roy et al. 2015), in agreement with the model by Inutsuka (2001), and from the power-law distribution of line masses observed for supercritical filaments.


2020 ◽  
Vol 500 (4) ◽  
pp. 4257-4276
Author(s):  
E Fiorellino ◽  
D Elia ◽  
Ph André ◽  
A Men’shchikov ◽  
S Pezzuto ◽  
...  

ABSTRACT The Herschel Gould Belt survey mapped the nearby (d < 500 pc) star-forming regions to understand better how the prestellar phase influences the star formation process. Here, we report a complete census of dense cores in a ∼15 deg2 area of the Serpens star-forming region located between d ∼ 420 and 484 pc. The PACS and SPIRE cameras imaged this cloud from 70 to 500 μm. With the multiwavelength source extraction algorithm getsources, we extract 833 sources, of which 709 are starless cores and 124 are candidate protostellar cores. We obtain temperatures and masses for all the sample, classifying the starless cores in 604 prestellar cores and 105 unbound cores. Our census of sources is $80{{\ \rm per\ cent}}$ complete for M > 0.8 M⊙ overall. We produce the core mass function (CMF) and compare it with the initial mass function (IMF). The prestellar CMF is consistent with lognormal trend up to ∼2 M⊙, after which it follows a power law with slope of −2.05 ± 0.34. The tail of its CMF is steeper but still compatible with the IMF for the region we studied in this work. We also extract the filaments network of the Serpens region, finding that $81{{\ \rm per\ cent}}$ of prestellar cores lie on filamentary structures. The spatial association between cores and filamentary structure supports the paradigm, suggested by other Herschel observations, that prestellar cores mostly form on filaments. Serpens is confirmed to be a young, low-mass and active star-forming region.


1998 ◽  
Vol 11 (1) ◽  
pp. 425-426
Author(s):  
Takenori Nakano

The initial mass function of stars (IMF) at small masses depends on several factors. First, it depends on the mass function of cloud cores in which stars form. Second, there must be a lower limit to the core mass for contraction; very small mass cores may not contract even if they exist. This must affect greatly the IMF near its lower end. Third, not all core matter may become stars; we must determine the stellar mass M*, or the star formation efficiency M*/Mcc, as a function of the mass of the cloud core, Mcc. In this paper we discuss the second and third points.


2019 ◽  
Vol 629 ◽  
pp. L4 ◽  
Author(s):  
Ph. André ◽  
D. Arzoumanian ◽  
V. Könyves ◽  
Y. Shimajiri ◽  
P. Palmeirim

Context. The origin of the stellar initial mass function (IMF) is one of the most debated issues in astrophysics. Aims. Here we explore the possible link between the quasi-universal filamentary structure of star-forming molecular clouds and the origin of the IMF. Methods. Based on our recent comprehensive study of filament properties from Herschel Gould Belt survey observations, we derive, for the first time, a good estimate of the filament mass function (FMF) and filament line mass function (FLMF) in nearby molecular clouds. We use the observed FLMF to propose a simple toy model for the origin of the prestellar core mass function (CMF), relying on gravitational fragmentation of thermally supercritical but virialized filaments. Results. We find that the FMF and the FLMF have very similar shapes and are both consistent with a Salpeter-like power-law function (dN/dlog Mline ∝ Mline−1.5±0.1) in the regime of thermally supercritical filaments (Mline >  16 M⊙ pc−1). This is a remarkable result since, in contrast, the mass distribution of molecular clouds and clumps is known to be significantly shallower than the Salpeter power-law IMF, with dN/dlog Mcl ∝ Mcl−0.7. Conclusions. Since the vast majority of prestellar cores appear to form in thermally transcritical or supercritical filaments, we suggest that the prestellar CMF and by extension the stellar IMF are at least partly inherited from the FLMF through gravitational fragmentation of individual filaments.


2021 ◽  
Vol 502 (4) ◽  
pp. 5185-5199
Author(s):  
Hamidreza Mahani ◽  
Akram Hasani Zonoozi ◽  
Hosein Haghi ◽  
Tereza Jeřábková ◽  
Pavel Kroupa ◽  
...  

ABSTRACT Some ultracompact dwarf galaxies (UCDs) have elevated observed dynamical V-band mass-to-light (M/LV) ratios with respect to what is expected from their stellar populations assuming a canonical initial mass function (IMF). Observations have also revealed the presence of a compact dark object in the centres of several UCDs, having a mass of a few to 15 per cent of the present-day stellar mass of the UCD. This central mass concentration has typically been interpreted as a supermassive black hole, but can in principle also be a subcluster of stellar remnants. We explore the following two formation scenarios of UCDs: (i) monolithic collapse and (ii) mergers of star clusters in cluster complexes as are observed in massively starbursting regions. We explore the physical properties of the UCDs at different evolutionary stages assuming different initial stellar masses of the UCDs and the IMF being either universal or changing systematically with metallicity and density according to the integrated Galactic IMF theory. While the observed elevated M/LV ratios of the UCDs cannot be reproduced if the IMF is invariant and universal, the empirically derived IMF that varies systematically with density and metallicity shows agreement with the observations. Incorporating the UCD-mass-dependent retention fraction of dark remnants improves this agreement. In addition, we apply the results of N-body simulations to young UCDs and show that the same initial conditions describing the observed M/LV ratios reproduce the observed relation between the half-mass radii and the present-day masses of the UCDs. The findings thus suggest that the majority of UCDs that have elevated M/LV ratios could have formed monolithically with significant remnant-mass components that are centrally concentrated, while those with small M/LV values may be merged star cluster complexes.


Author(s):  
I. Ferreras ◽  
C. Weidner ◽  
A. Vazdekis ◽  
F. La Barbera

The stellar initial mass function (IMF) is one of the fundamental pillars in studies of stellar populations. It is the mass distribution of stars at birth, and it is traditionally assumed to be universal, adopting generic functions constrained by resolved (i.e. nearby) stellar populations (e.g., Salpeter 1955; Kroupa 2001; Chabrier 2003). However, for the vast majority of cases, stars are not resolved in galaxies. Therefore, the interpretation of the photo-spectroscopic observables is complicated by the many degeneracies present between the properties of the unresolved stellar populations, including IMF, age distribution, and chemical composition. The overall good match of the photometric and spectroscopic observations of galaxies with population synthesis models, adopting standard IMF choices, made this issue a relatively unimportant one for a number of years. However, improved models and observations have opened the door to constraints on the IMF in unresolved stellar populations via gravity-sensitive spectral features. At present, there is significant evidence of a non-universal IMF in early-type galaxies (ETGs), with a trend towards a dwarf-enriched distribution in the most massive systems (see, e.g., van Dokkum & Conroy 2010; Ferreras et al. 2013; La Barbera et al. 2013). Dynamical and strong-lensing constraints of the stellar M/L in similar systems give similar results, with heavier M/L in the most massive ETGs (see, e.g., Cappellari et al. 2012; Posacki et al. 2015). Although the interpretation of the results is still open to discussion (e.g., Smith 2014; La Barbera 2015), one should consider the consequences of such a bottom-heavy IMF in massive galaxies.


2020 ◽  
Vol 635 ◽  
pp. A34 ◽  
Author(s):  
V. Könyves ◽  
Ph. André ◽  
D. Arzoumanian ◽  
N. Schneider ◽  
A. Men’shchikov ◽  
...  

We present a detailed study of the Orion B molecular cloud complex (d ~ 400 pc), which was imaged with the PACS and SPIRE photometric cameras at wavelengths from 70 to 500 μm as part of the Herschel Gould Belt survey (HGBS). We release new high-resolution maps of column density and dust temperature for the whole complex, derived in the same consistent manner as for other HGBS regions. In the filamentary subregions NGC 2023 and 2024, NGC 2068 and 2071, and L1622, a total of 1768 starless dense cores were identified based on Herschel data, 490–804 (~28−45%) of which are self-gravitating prestellar cores that will likely form stars in the future. A total of 76 protostellar dense cores were also found. The typical lifetime of the prestellar cores was estimated to be tpreOrionB = 1.7−0.6+0.8Myr. The prestellar core mass function (CMF) derived for the whole sample of prestellar cores peaks at ~0.5 M⊙ (in dN/dlogM format) and is consistent with a power-law with logarithmic slope −1.27 ± 0.24 at the high-mass end, compared to the Salpeter slope of − 1.35. In the Orion B region, we confirm the existence of a transition in prestellar core formation efficiency (CFE) around a fiducial value AVbg ~ 7 mag in background visual extinction, which is similar to the trend observed with Herschel in other regions, such as the Aquila cloud. This is not a sharp threshold, however, but a smooth transition between a regime with very low prestellar CFE at AVbg < 5 and a regime with higher, roughly constant CFE at AVbg ≳ 10. The total mass in the form of prestellar cores represents only a modest fraction (~20%) of the dense molecular cloud gas above AVbg ≳ 7 mag. About 60–80% of the prestellar cores are closely associated with filaments, and this fraction increases up to >90% when a more complete sample of filamentary structures is considered. Interestingly, the median separation observed between nearest core neighbors corresponds to the typical inner filament width of ~0.1 pc, which is commonly observed in nearby molecular clouds, including Orion B. Analysis of the CMF observed as a function of background cloud column density shows that the most massive prestellar cores are spatially segregated in the highest column density areas, and suggests that both higher- and lower-mass prestellar cores may form in denser filaments.


Sign in / Sign up

Export Citation Format

Share Document