scholarly journals δ Scuti-type pulsation in the hot component of the Algol-type binary system BG Peg

2013 ◽  
Vol 9 (S301) ◽  
pp. 483-484
Author(s):  
T. Şenyüz ◽  
E. Soydugan

AbstractIn this study, 23 Algol-type binary systems, which were selected as candidate binaries with pulsating components, were observed at the Çanakkale Onsekiz Mart University Observatory. One of these systems was BG Peg. Its hotter component shows δ Scuti-type light variations. Physical parameters of BG Peg were derived from modelling the V light curve using the Wilson-Devinney code. The frequency analysis shows that the pulsational component of the BG Peg system pulsates in two modes with periods of 0.039 and 0.047 d. Mode identification indicates that both modes are most likely non-radial l = 2 modes.

2013 ◽  
Vol 9 (S301) ◽  
pp. 59-62 ◽  
Author(s):  
Markus Hareter ◽  
Margit Paparó

AbstractThe star HD 51844 was observed in the CoRoT LRa02 as a target in the seismology field, which turned out to be an SB2 system. The 117-day light curve revealed δ Scuti pulsations in the range of 6 to 15 d−1 where four frequencies have amplitudes larger than 1.4 mmag, and a rich frequency spectrum with amplitudes lower than 0.6 mmag. Additionally, the light curve exhibits a 3-mmag brightening event recurring every 33.5 days with a duration of about 5 days. The radial velocities from spectroscopy confirmed that the star is an eccentric binary system with nearly identical masses and physical parameters. The brightening event in the light curve coincides with the maximum radial-velocity separation showing that the brightening is in fact caused by tidal distortion and/or reflected light. One component displays large line-profile variations, while the other does not show significant variation. The frequency analysis revealed a quintuplet structure of the four highest-amplitude frequencies, which is due to the orbital motion of the pulsating star.


2018 ◽  
Vol 619 ◽  
pp. A138
Author(s):  
V. Perdelwitz ◽  
S. Czesla ◽  
J. Robrade ◽  
T. Pribulla ◽  
J. H. M. M. Schmitt

Context.Close binary systems provide an excellent tool for determining stellar parameters such as radii and masses with a high degree of precision. Due to the high rotational velocities, most of these systems exhibit strong signs of magnetic activity, postulated to be the underlying reason for radius inflation in many of the components. Aims.We extend the sample of low-mass binary systems with well-known X-ray properties. Methods.We analyze data from a singular XMM-Newton pointing of the close, low-mass eclipsing binary system BX Tri. The UV light curve was modeled with the eclipsing binary modeling tool PHOEBE and data acquired with the EPIC cameras was analyzed to search for hints of orbital modulation. Results.We find clear evidence of orbital modulation in the UV light curve and show that PHOEBE is fully capable of modeling data within this wavelength range. Comparison to a theoretical flux prediction based on PHOENIX models shows that the majority of UV emission is of photospheric origin. While the X-ray light curve does exhibit strong variations, the signal-to-noise ratio of the observation is insufficient for a clear detection of signs of orbital modulation. There is evidence of a Neupert-like correlation between UV and X-ray data.


2020 ◽  
Vol 29 (1) ◽  
pp. 72-80 ◽  
Author(s):  
Fatemeh Davoudi ◽  
Atila Poro ◽  
Fahri Alicavus ◽  
Afshin Halavati ◽  
Saeed Doostmohammadi ◽  
...  

AbstractNew observations of the eclipsing binary system V1848 Ori were carried out using the V filter resulting in a determination of new times of minima and new ephemeris were obtained. We presented the first complete analysis of the system’s orbital period behavior and analysis of O-C diagram done by the GA and MCMC approaches in OCFit code. The O-C diagram demonstrates a sinusoidal trend in the data; this trend suggests a cyclic change caused by the LITE effect with a period of 10.57 years and an amplitude of 7.182 minutes. It appears that there is a third body with mass function of f (m3) = 0.0058 M⊙ in this binary system. The light curves were analyzed using the Wilson-Devinney code to determine some geometrical and physical parameters of the system. These results show that V1848 Ori is a contact W UMa binary system with the mass ratio of q = 0.76 and a weak fillout factor of 5.8%. The O’Connell effect was not seen in the light curve and there is no need to add spot.


2013 ◽  
Vol 9 (S301) ◽  
pp. 433-434 ◽  
Author(s):  
Filiz Kahraman Aliçavuş ◽  
Esin Soydugan

AbstractWe present frequency analysis of the Kepler light curve of KIC 10486425, an eclipsing binary system with a pulsating component. The parameters of the binary were obtained by modelling the light curve with the Wilson-Devinney program. The residuals from this modelling were subject to Fourier analysis which allowed us to detect 120 periodic terms characteristic for γ Dor-type pulsations. The dominant frequency of these changes amounts to 1.3189 d−1.


2021 ◽  
Vol 2145 (1) ◽  
pp. 012005
Author(s):  
N Lamlert ◽  
W Maithong

Abstract V781 Tau is one of W UMa eclipsing binary systems whose orbital period is 0.34 days. The 0.7-meter telescope with CCD photometric system in B and V filters was conducted at the Regional Observatory for the Public, Chachoengsao, Thailand during December 2018, UT. The Wilson-Devinney Technique was used for calculating the physical properties of V781 Tau. The results showed the inclination of their orbital is 66.140°±0.14. The effective temperature of the primary and secondary star is 6,060 and 5,881 K, respectively and the degree of contact is 4.38 %


Galaxies ◽  
2020 ◽  
Vol 8 (4) ◽  
pp. 75
Author(s):  
Alexios Liakos ◽  
Panagiotis Niarchos

The present work concerns the Asteroseismology of the Kepler-detached eclipsing binary KIC 8504570. Particularly, it focuses on the pulsational behaviour of the oscillating component of this system and the estimation of its physical parameters in order to enrich the so far poor sample of systems of this kind. Using spectroscopic observations, the spectral type of the primary component was determined and used to create accurate light curve models and estimate its absolute parameters. The light curve residuals were subsequently analysed using Fourier transformation techniques to obtain the pulsation models. Theoretical models of δ Scuti stars were employed to identify the oscillation modes of the six detected independent frequencies of the pulsator. In addition, more than 385 combination frequencies were also detected. The absolute and the pulsational properties of the δ Scuti star of this system are discussed and compared with all the currently known similar cases. Moreover, using a recent(empirical) luminosity–pulsation period relationship for δ Scuti stars, the distance of the system was estimated.


2021 ◽  
Vol 258 (1) ◽  
pp. 8
Author(s):  
L. Molnár ◽  
A. Bódi ◽  
A. Pál ◽  
A. Bhardwaj ◽  
F–J. Hambsch ◽  
...  

Abstract The Transiting Exoplanet Survey Satellite (TESS) space telescope is collecting continuous, high-precision optical photometry of stars throughout the sky, including thousands of RR Lyrae stars. In this paper, we present results for an initial sample of 118 nearby RR Lyrae stars observed in TESS Sectors 1 and 2. We use differential image photometry to generate light curves and analyze their mode content and modulation properties. We combine accurate light-curve parameters from TESS with parallax and color information from the Gaia mission to create a comprehensive classification scheme. We build a clean sample, preserving RR Lyrae stars with unusual light-curve shapes, while separating other types of pulsating stars. We find that a large fraction of RR Lyrae stars exhibit various low-amplitude modes, but the distribution of those modes is markedly different from those of the bulge stars. This suggests that differences in physical parameters have an observable effect on the excitation of extra modes, potentially offering a way to uncover the origins of these signals. However, mode identification is hindered by uncertainties when identifying the true pulsation frequencies of the extra modes. We compare mode amplitude ratios in classical double-mode stars to stars with extra modes at low amplitudes and find that they separate into two distinct groups. Finally, we find a high percentage of modulated stars among the fundamental mode pulsators, but also find that at least 28% of them do not exhibit modulation, confirming that a significant fraction of stars lack the Blazhko effect.


2016 ◽  
Vol 12 (S329) ◽  
pp. 402-402 ◽  
Author(s):  
E. Gosset ◽  
L. Mahy ◽  
Y. Damerdji ◽  
C. Nitschelm ◽  
H. Sana ◽  
...  

AbstractWe present here a modern study of the radial velocity curve and of the photometric light curve of the very interesting supergiant O7.5If + O9I(f) binary system HD 166734. The physical parameters of the stars and the orbital parameters are carefully determined. We also perform the analysis of the observed X-ray light curve of this colliding-wind binary.


1993 ◽  
Vol 137 ◽  
pp. 368-370
Author(s):  
F. Barone ◽  
L. Di Fiore ◽  
S. Mancuso ◽  
L. Milano ◽  
G. Russo

AbstractIn this paper we apply the Wilson-Price procedure to the solution of the binary system AO Cam using simultaneously all the available information and a statistical criterion to judge about the quality of the solutions found.


2019 ◽  
Vol 55 (1) ◽  
pp. 65-72
Author(s):  
Raúl Michel ◽  
Francesco Acerbi ◽  
Carlo Barani ◽  
Massimiliano Martignoni

The first multicolor observations and light curve solutions of the eclipsing binary systems V1009 Per and CRTS J031642.2+332639 are presented. Using the 2005 version of the Wilson-Devinney code, both systems are found to be W UMa contact binaries. V1009 Per has a mass ratio of q = 0.362±0.002 and a shallow fill out parameter of f = 11.8 ± 0.6% while CRTS J031642.2+332639 has a mass ratio of q = 2.507±0.006 and a fill out of f = 13.6±0.4%. High orbital inclinations, i = 85◦.9 for V1009 Per and i = 83◦.2 for CRTS J031642.2+332639, imply that both systems are total eclipsing binaries and that the photometric parameters here obtained are reliable. Based on 16 times of minimum the orbital period variations of V1009 Per are discussed. The absolute dimensions of the systems are estimated and, from the log M − log L diagram, it is found that both components of the systems follow the general pattern of the W subtype W Ursae Majoris systems.


Sign in / Sign up

Export Citation Format

Share Document