scholarly journals 3D moving mesh simulations of Galactic center cloud G2

2013 ◽  
Vol 9 (S303) ◽  
pp. 318-319 ◽  
Author(s):  
P. C. Fragile ◽  
P. Anninos ◽  
S. D. Murray

AbstractUsing three-dimensional, moving-mesh simulations, we investigate the future evolution of the recently discovered gas cloud G2 traveling through the galactic center. From our simulations we expect an average feeding rate onto Sgr A* in the range of (5−19) × 10−8M⊙ yr−1 beginning in 2014. This accretion varies by less than a factor of three on timescales ∼ 1 month, and shows no more than a factor of 10 difference between the maximum and minimum observed rates within any given model. These rates are comparable to the current estimated accretion rate in the immediate vicinity of Sgr A*, although they represent only a small (< 10%) increase over the current expected feeding rate at the effective inner boundary of our simulations (racc = 750 RS ∼ 1015 cm). We also explore multiple possible equations of state to describe the gas. In examining the Br-γ light curves produced from our simulations, we find that all of our isothermal models predict significant (factor of 10) enhancements in the luminosity of G2 as it approaches pericenter, in conflict with observations. Models that instead allow the cloud to heat as it is compressed do better at matching observations.

2013 ◽  
Vol 9 (S303) ◽  
pp. 254-263
Author(s):  
S. Gillessen ◽  
R. Genzel ◽  
T. K. Fritz ◽  
F. Eisenhauer ◽  
O. Pfuhl ◽  
...  

AbstractIn 2011, we discovered a compact gas cloud (“G2”) with roughly three Earth masses that is falling on a near-radial orbit toward the massive black hole in the Galactic center. The orbit is well constrained and pericenter passage is predicted for early 2014. Our data beautifully show that G2 gets tidally sheared apart due to the massive black hole's force. During the next months, we expect that in addition to the tidal effects, hydrodynamics get important, when G2 collides with the hot ambient gas around Sgr A*. Simulations show that ultimately, the cloud's material might fall into the massive black hole. Predictions for the accretion rate and luminosity evolution, however, are very difficult due to the many unknowns. Nevertheless, this might be a unique opportunity in the next years to observe how gas feeds a massive black hole in a galactic nucleus.


2020 ◽  
Vol 72 (3) ◽  
Author(s):  
Masato Tsuboi ◽  
Yoshimi Kitamura ◽  
Takahiro Tsutsumi ◽  
Ryosuke Miyawaki ◽  
Makoto Miyoshi ◽  
...  

Abstract The Galactic Center IRS 13E cluster is a very intriguing infrared object located at ${\sim } 0.13$ pc from Sagittarius A$^\ast$ (Sgr A$^\ast$) in projection distance. There are arguments both for and against the hypothesis that a dark mass like an intermediate mass black hole (IMBH) exists in the cluster. We recently detected the rotating ionized gas ring around IRS 13E3, which belongs to the cluster, in the H30$\alpha$ recombination line using ALMA. The enclosed mass is derived to be $M_{\mathrm{encl.}}\simeq 2\times 10^{4}\, M_\odot$, which agrees with an IMBH and is barely less than the astrometric upper limit mass of an IMBH around Sgr A$^\ast$. Because the limit mass depends on the true three-dimensional (3D) distance from Sgr A$^\ast$, it is very important to determine it observationally. However, the 3D distance is indefinite because it is hard to determine the line-of-sight (LOS) distance by usual methods. We attempt here to estimate the LOS distance from spectroscopic information. The CH$_3$OH molecule is easily destroyed by the cosmic rays around Sgr A$^{\ast }$. However, we detected a highly excited CH$_3$OH emission line in the ionized gas stream associated with IRS 13E3. This indicates that IRS 13E3 is located at $r\gtrsim 0.4$ pc from Sgr A$^{\ast }$.


1989 ◽  
Vol 136 ◽  
pp. 535-541 ◽  
Author(s):  
Jun-Hui Zhao ◽  
R. D. Ekers ◽  
W. M. Goss ◽  
K. Y. Lo ◽  
Ramesh Narayan

We investigate the long-term flux density variations of the compact radio source Sgr A∗ at the galactic center by combining recent VLA observations with previous Green Bank interferometer data. We present radio flux density light-curves for Sgr A∗ at 20, 11, 6 and 3.7 cm from 1974 to 1987. Long-term variability with a timescale of at least 5 years is seen at 20 cm and there is evidence for more rapid variations at the shorter wavelengths. The variability timescales at 20, 11 and 6 cm fit the λ2 scaling predicted by the theory of refractive scintillation suggesting that the variability could be due to this cause. However, the timescales are relatively short, implying an unusually high velocity in the scattering screen. The modulation index of the variability is large and relatively independent of wavelength.


2013 ◽  
Vol 9 (S303) ◽  
pp. 322-323
Author(s):  
A. Miyazaki ◽  
S. S. Lee ◽  
B. W. Sohn ◽  
T. Jung ◽  
M. Tsuboi ◽  
...  

AbstractWe searched the time lag between the intra-day variables (IDVs) of Sagittarius A* at 22, 43, and 86 GHz bands using the Korean VLBI Network (KVN). The time lags between the IDV flare peaks at 22 and 43 GHz are reported, and they suggest that the flare emissions come from adiabatically expanding plasma blobs, ejected close to the Galactic center black hole. We searched the time lags between light curves at 90 and 102 GHz using the Nobeyama Millimeter Array, but could not find significant time lags. In order to detect the diversity of the time lags of Sgr A* flares, we performed observations of Sgr A* in the 22, 43, and 86 GHz bands using the KVN in the winter of 2013. Because the receiver system of KVN can observe Sgr A* in these three bands simultaneously, the KVN is very useful to detect the time lags of Sgr A* flares.


2012 ◽  
Vol 8 (S290) ◽  
pp. 309-310 ◽  
Author(s):  
Roman V. Shcherbakov ◽  
Robert F. Penna ◽  
Jonathan C. McKinney

AbstractWe briefly summarize the method of simulating Sgr A* polarized sub-mm spectra from the accretion flow and fitting the observed spectrum. The dynamical flow model is based on three-dimensional general relativistic magneto hydrodynamic simulations. Fully self-consistent radiative transfer of polarized cyclo-synchrotron emission is performed. We compile a mean sub-mm spectrum of Sgr A* and fit it with the mean simulated spectra. We estimate the ranges of inclination angle θ=42°–75°, mass accretion rate Ṁ=(1.4-7.0)×10−8M⊙year−1, and electron temperature Te=(3–4)×1010K at 6M. We discuss multiple caveats in dynamical modeling, which must be resolved to make further progress.


2013 ◽  
Vol 9 (S303) ◽  
pp. 324-326
Author(s):  
M. Schartmann ◽  
A. Burkert ◽  
A. Ballone ◽  
C. Alig ◽  
S. Gillessen ◽  
...  

AbstractRecently the gas and dust cloud “G2” was discovered on a highly eccentric orbit around the massive black hole in the Galactic center. The orbit will bring the cloud as close as 2400 Schwarzschild radii to Sgr A* beginning of 2014. With the help of hydrodynamical simulations using the PLUTO code, we investigate possible origins and the fate of the cloud in the coming years. In this proceedings article, we concentrate on a scenario where G2 is interpreted as a diffuse gas cloud and show its detailed evolution in the observable position-velocity diagrams. We further elaborate on the problem of the tail emission which might or might not be related to the G2 cloud.


2012 ◽  
Vol 759 (2) ◽  
pp. 132 ◽  
Author(s):  
Peter Anninos ◽  
P. Chris Fragile ◽  
Julia Wilson ◽  
Stephen D. Murray

2013 ◽  
Vol 9 (S303) ◽  
pp. 147-149
Author(s):  
L. O. Sjouwerman ◽  
Y. M. Pihlström

AbstractWe report on the detection of 36 and 44 GHz Class I methanol (CH3OH) maser emission in the Sagittarius A (Sgr A) complex with the Karl G. Jansky Very Large Array (VLA). These VLA observations show that the Sgr A complex harbors at least three different maser tracers of shocked regions in the radio regime. The 44 GHz masers correlate with the positions and velocities of previously detected 36 GHz CH3OH masers, but less with 1720 MHz OH masers. Our detections agree with theoretical predictions that the densities and temperatures conducive for 1720 MHz OH masers may also produce 36 and 44 GHz CH3OH maser emission. However, many 44 GHz masers do not overlap with 36 GHz methanol masers, suggesting that 44 GHz masers also arise in regions too hot and too dense for 36 GHz masers to form. This agrees with the non-detection of 1720 MHz OH masers in the same area, which are thought to be excited under even cooler and less dense conditions. We speculate that the geometry of the 36 GHz masers outlines the current location of a shock front.


1994 ◽  
Vol 49 (6) ◽  
pp. 663-670
Author(s):  
S. Sh. Soulayman ◽  
C. Ch. Marti ◽  
Ch. Ch. Guilpin

Abstract In this paper we apply the method developed in part I for describing the crystalline state of two and three dimensional inert gases. For strong anharmonicity of fourth order, the equations of state of these gases are obtained. This way we calculate the thermoelastic properties of two and three dimensional argon, krypton and xenon using the Lennard-Jones potential. The corrections to the Helmholtz free energy and thermodynamic properties due to quantum effects are considered. The results are compared with the available experimental data.


Sign in / Sign up

Export Citation Format

Share Document