scholarly journals Magnetic field structures inside magnetars with strong toroidal field

2013 ◽  
Vol 9 (S302) ◽  
pp. 423-426
Author(s):  
Kotaro Fujisawa

AbstractWe have analyzed the magnetized equilibrium studies with strong toroidal magnetic fields and found that the negative toroidal current density inside the star is very important for the strong toroidal magnetic fields. The strong toroidal magnetic fields require the strong poloidal current, but the strong poloidal current results in the localized strong toroidal current density in the axisymmetric system. This localized toroidal current changes the magnetic field configuration and makes the size of the toroidal magnetic field region smaller. As a result, the toroidal magnetic field energy can not become large. We need to cancel out the localized toroidal current density in order to obtain the large toroidal fields solutions. We have found and showed that the negative toroidal current cancels out the localized toroidal current density and sustain the large toroidal magnetic field energy inside the star. We can explain the magnetized equilibrium studies with strong toroidal magnetic fields systematically using the negative current density. Physical meaning of the negative current is key to the magnetar interior magnetic fields.

1967 ◽  
Vol 31 ◽  
pp. 133-134
Author(s):  
S. I. Syrovatskii

There are two distinct but as it seems strongly connected problems. The first is the surprisingly rapid dissipation of magnetic fields which is observed in the Sun's atmosphere and must be supposed for some other objects as well. The second problem is the acceleration of fast particles in magnetized cosmical plasma.


1992 ◽  
Vol 128 ◽  
pp. 245-247
Author(s):  
S. V. Bogovalov

AbstractThe flow of e+e− plasma ejected by an axisymmetrically rotating magnetized neutron star is considered in a hydrodynamical approximation. It is shown that in the vicinity of the light cylinder a helical discontinuity is formed. The transformation of toroidal magnetic field energy into plasma energy takes place at this discontinuity. Particles are accelerated to an energy of 10TeV for a neutron star with the characteristics of the Crab pulsar.


2013 ◽  
Vol 9 (S302) ◽  
pp. 427-428
Author(s):  
Kotaro Fujisawa ◽  
Shota Kisaka

AbstractWe have calculated many Hall equilibrium states within the neutron star crust under various boundary conditions in order to investigate the influences of the boundary conditions clearly. We have found two important features of these solutions. First, the magnitude of the core magnetic fields affects the toroidal to total magnetic field energy ratio within the crust (Et/E). If the core magnetic fields are vanished, the crustal toroidal magnetic fields become weak and the typical energy ratio is only Et / E ~ 0.1%. If the core magnetic fields are strong, however, the crustal toroidal magnetic fields become strong and the typical ratio reaches Et / E ~ 15%. Second, the core toroidal magnetic fields and the twisted magnetosphere around the star make the size of the crustal toroidal magnetic field regions large. Therefore if the strong core magnetic fields have strong toroidal component, both strength and size of the crustal toroidal magnetic fields become large. These results show that the Hall MHD evolutions would be deeply affected by both inner and outer boundary conditions.


1973 ◽  
Vol 9 (1) ◽  
pp. 1-15 ◽  
Author(s):  
E. E. Nolting ◽  
P. E. Jindra ◽  
D. R. Wells

Detailed measurements of the trapped magnetic fields and currents in plasma structures generated by conical theta-pinches are reported. Studies of these structures interacting with a magnetic barrier, and with each other in a collision at the centre of a magnetic mirror, are reported. The magnetic well formed by the collision has been studied by simultaneous use of several diagnostic techniques. The measurements are in agreement with a force-free, collinear magnetic field configuration (Wells 1972). Arguments relating superposability and collinearity of flow fields to these observations are given.


1997 ◽  
Vol 163 ◽  
pp. 799-800
Author(s):  
Craig H. Smith ◽  
Christopher M. Wright ◽  
David K. Aitken ◽  
Patrick F. Roche

AbstractWe present the results from mid-infrared spectro-polarimetric observations of a number of bi-polar outflow sources. The specto-polarimetric data provides information on the polarization mechanism and the magnetic field direction. The field direction in the disks of the observed sources is most often normal to the ambient field direction and lies in the plane of the disk, indicating a toroidal rather than poloidal field configuration.


Author(s):  
Dennis Whyte

The advantages of high magnetic fields in tokamaks are reviewed, and why they are important in leading to more compact tokamaks. A brief explanation is given of what limits the magnetic field in a tokamak, and why high temperature superconductors (HTSs) are a game changer, not just because of their higher magnetic fields but also for reasons of higher current density and higher operating temperatures. An accelerated pathway to fusion energy is described, defined by the SPARC and ARC tokamak designs. This article is part of a discussion meeting issue ‘Fusion energy using tokamaks: can development be accelerated?’.


2002 ◽  
Vol 29 (10) ◽  
pp. 86-1-86-4 ◽  
Author(s):  
B. Hnat ◽  
S. C. Chapman ◽  
G. Rowlands ◽  
N. W. Watkins ◽  
W. M. Farrell

Author(s):  
Wei He ◽  
Jitao Zhang ◽  
Yueran Lu ◽  
Aichao Yang ◽  
Chiwen Qu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document