scholarly journals Early-type galaxy formation: understanding the role of the environment

2014 ◽  
Vol 10 (S309) ◽  
pp. 291-292
Author(s):  
Ricardo Demarco ◽  
Alessandro Rettura ◽  
Chris Lidman ◽  
Julie Nantais ◽  
Yara Jaffe ◽  
...  

AbstractOne of the most characteristic features of galaxy clusters is the so-called “red sequence” (RS) of early-type galaxies. Since these galaxies are, in general, devoid of gas and dust, their red colors are mainly a consequence of their passive nature. However, the physical mechanisms responsible for quenching their star formation, thus originating the RS, are poorly understood. Environmental effects should play a significant role in the formation of the RS by transforming the observed galaxy properties from late to early-type ones. In this respect, we have initiated a KMOS program aimed at studying the kinematical structure of cluster galaxies at 0.8 < z < 1.7 in an effort to disentangle the physical mechanisms responsible for cluster galaxy evolution and the formation of the RS.

2020 ◽  
Vol 633 ◽  
pp. A131 ◽  
Author(s):  
A. Böhm ◽  
B. L. Ziegler ◽  
J. M. Pérez-Martínez ◽  
T. Kodama ◽  
M. Hayashi ◽  
...  

Aims. While many aspects of the impact of dense environments on late-type galaxies at redshifts below unity have been scrutinized in the past few decades, observational studies of the interplay between environment and disk galaxy evolution at z >  1 are still scarce. We observed star-forming galaxies at z ≈ 1.5 selected from the HyperSuprimeCam Subaru Strategic Program. The galaxies are part of two significant overdensities of [O II] emitters identified via narrowband imaging and photometric redshifts from grizy photometry. Methods. We used the K-band Multi-Object Spectrograph (KMOS) to carry out Hα integral field spectroscopy of 46 galaxies in total. Ionized gas maps, star formation rates, and velocity fields were derived from the Hα emission line. We quantified morphological and kinematical asymmetries in order to look for potential gravitational (e.g., galaxy-galaxy) or hydrodynamical (e.g., ram-pressure) interactions. Results. Hα emission was detected in 36 of our targets. Of these galaxies, 34 are members of two (proto-)clusters at z = 1.47, confirming our selection strategy to be highly efficient. By fitting model velocity fields to the observed ones, we determined the intrinsic maximum rotation velocity Vmax of 14 galaxies. Utilizing the luminosity–velocity (Tully–Fisher) relation, we find that these galaxies are more luminous than their local counterparts of similar mass by up to ∼4 mag in the rest-frame B-band. In contrast to field galaxies at z <  1, the offsets of the z ≈ 1.5 (proto-)cluster galaxies from the local Tully–Fisher relation are not correlated with their star formation rates but with the ratio between Vmax and gas velocity dispersion σg. This probably reflects that fewer disks have settled to purely rotational kinematics and high Vmax/σg ratios, as is observed in the field at similar redshifts. Tests with degraded low-redshift cluster galaxy data show that we cannot identify purely hydrodynamical interactions with the imaging currently at hand. Due to relatively low galaxy velocity dispersions (σv <  400 km s−1) of the (proto-)clusters, gravitational interactions are likely more efficient, resulting in higher kinematical asymmetries than in present-days clusters.


2020 ◽  
Vol 637 ◽  
pp. A30
Author(s):  
J. M. Pérez-Martínez ◽  
B. Ziegler ◽  
A. Böhm ◽  
M. Verdugo

Aims. In order to understand the role of the different processes that drive galaxy evolution in clusters, we need comprehensive studies that simultaneously examine several of the most important physical properties of galaxies. In this work we study the interplay between the kinematic state and star formation activity of galaxies in the RXJ1347−1145 cluster complex at z ∼ 0.45. Methods. We used VLT/VIMOS to obtain slit spectra for 95 galaxies across the 40′ × 40′ area where the RXJ1347−1145 cluster complex resides. We determined the cluster membership of our targets by identifying one or more of the available emission lines within the wavelength range. Our spectroscopy is complemented with archival SUBARU/Suprime-Cam deep photometric observations in five optical bands (B, V, Rc, Ic, z′). We examined the kinematic properties of our sample attending to the degree of distortion of the extracted rotation curves. Regular rotating galaxies were included in our Tully–Fisher analysis while the distorted ones were used to study the role of cluster-specific interactions with respect to star formation and AGN activity. Results. Our analysis confirmed the cluster membership for approximately half of our targets. We report a higher fraction of galaxies with irregular gas kinematics in the cluster environment than in the field. Cluster galaxies with regular rotation display a moderate brightening in the B-band Tully–Fisher relation compatible with the gradual evolution of the stellar populations with lookback time, and no significant evolution in the stellar-mass Tully–Fisher relation, in line with previous studies at similar redshift. Average specific star formation rate values are slightly lower in our cluster sample (−0.15 dex) with respect to the main sequence of star-forming galaxies, confirming the role of the environment in the early quenching of star formation in clusters. Finally, we carried out an exploratory observational study on the stellar-to-halo mass relation finding that cluster galaxies tend to have slightly lower stellar mass values for a fixed halo mass compared to their field counterparts.


2010 ◽  
Vol 714 (1) ◽  
pp. L108-L112 ◽  
Author(s):  
Kevin Schawinski ◽  
Nathan Dowlin ◽  
Daniel Thomas ◽  
C. Megan Urry ◽  
Edward Edmondson

2009 ◽  
Vol 5 (S267) ◽  
pp. 128-128
Author(s):  
Roderik Overzier

I present results from the Galaxy Evolution Explorer (GALEX) Key Project on “Lyman break galaxy analogs” (LBA). The LBA project was designed in order to search for nearby (z<0.3) UV-luminous starburst galaxies that could serve as a training set that can be compared with starbursts at higher redshift, in particular the population of UV-selected Lyman Break Galaxies (LBGs) at z ≳ 3 (Heckman et al. 2005; Hoopes et al. 2007). This search proved highly successful and we have since shown that there exists a rare population of nearby galaxies that is most similar to LBGs in terms of stellar mass, metallicity, extinction, star formation rate, size, morphology and gas kinematics (Overzier et al. 2008, 2009ab; Basu–Zych et al. 2007, 2009).


Author(s):  
Louise O.V. Edwards

This article begins with a general introduction to galaxy formation and evolution and ends with a discussion of the long-term spectroscopic study: The Role of Close Companions in the Formation of Brightest Cluster Galaxies and Intracluster Light. To illustrate the power, goals and aims of this larger project, preliminary data for one of the galaxy clusters in our sample is presented, Abell 407, which appears to be caught in the act of forming its Brightest Cluster Galaxy (BCG).


2020 ◽  
Vol 500 (3) ◽  
pp. 3394-3412
Author(s):  
Steven R Furlanetto

ABSTRACT In recent years, simple models of galaxy formation have been shown to provide reasonably good matches to available data on high-redshift luminosity functions. However, these prescriptions are primarily phenomenological, with only crude connections to the physics of galaxy evolution. Here, we introduce a set of galaxy models that are based on a simple physical framework but incorporate more sophisticated models of feedback, star formation, and other processes. We apply these models to the high-redshift regime, showing that most of the generic predictions of the simplest models remain valid. In particular, the stellar mass–halo mass relation depends almost entirely on the physics of feedback (and is thus independent of the details of small-scale star formation) and the specific star formation rate is a simple multiple of the cosmological accretion rate. We also show that, in contrast, the galaxy’s gas mass is sensitive to the physics of star formation, although the inclusion of feedback-driven star formation laws significantly changes the naive expectations. While these models are far from detailed enough to describe every aspect of galaxy formation, they inform our understanding of galaxy formation by illustrating several generic aspects of that process, and they provide a physically grounded basis for extrapolating predictions to faint galaxies and high redshifts currently out of reach of observations. If observations show violations from these simple trends, they would indicate new physics occurring inside the earliest generations of galaxies.


2013 ◽  
Vol 9 (S304) ◽  
pp. 180-186
Author(s):  
Luigi Spinoglio

AbstractVarious observational techniques have been used to survey galaxies and AGN, from X-rays to radio frequencies, both photometric and spectroscopic. I will review these techniques aimed at the study of galaxy evolution and of the role of AGNs and star formation as the two main energy production mechanisms. I will then present as a new observational approach the far-IR spectroscopic surveys that could be done with planned astronomical facilities of the next future, such as SPICA from the space and CCAT from the ground.


2020 ◽  
Vol 644 ◽  
pp. A144
Author(s):  
D. Donevski ◽  
A. Lapi ◽  
K. Małek ◽  
D. Liu ◽  
C. Gómez-Guijarro ◽  
...  

The dust-to-stellar mass ratio (Mdust/M⋆) is a crucial, albeit poorly constrained, parameter for improving our understanding of the complex physical processes involved in the production of dust, metals, and stars in galaxy evolution. In this work, we explore trends of Mdust/M⋆ with different physical parameters and using observations of 300 massive dusty star-forming galaxies detected with ALMA up to z ≈ 5. Additionally, we interpret our findings with different models of dusty galaxy formation. We find that Mdust/M⋆ evolves with redshift, stellar mass, specific star formation rates, and integrated dust size, but that evolution is different for main-sequence galaxies than it is for starburst galaxies. In both galaxy populations, Mdust/M⋆ increases until z ∼ 2, followed by a roughly flat trend towards higher redshifts, suggesting efficient dust growth in the distant universe. We confirm that the inverse relation between Mdust/M⋆ and M⋆ holds up to z ≈ 5 and can be interpreted as an evolutionary transition from early to late starburst phases. We demonstrate that the Mdust/M⋆ in starbursts reflects the increase in molecular gas fraction with redshift and attains the highest values for sources with the most compact dusty star formation. State-of-the-art cosmological simulations that include self-consistent dust growth have the capacity to broadly reproduce the evolution of Mdust/M⋆ in main-sequence galaxies, but underestimating it in starbursts. The latter is found to be linked to lower gas-phase metallicities and longer dust-growth timescales relative to observations. The results of phenomenological models based on the main-sequence and starburst dichotomy as well as analytical models that include recipes for rapid metal enrichment are consistent with our observations. Therefore, our results strongly suggest that high Mdust/M⋆ is due to rapid dust grain growth in the metal-enriched interstellar medium. This work highlights the multi-fold benefits of using Mdust/M⋆ as a diagnostic tool for: (1) disentangling main-sequence and starburst galaxies up to z ∼ 5; (2) probing the evolutionary phase of massive objects; and (3) refining the treatment of the dust life cycle in simulations.


Sign in / Sign up

Export Citation Format

Share Document