scholarly journals Stellar kinematics and dark matter in dwarf galaxies

2015 ◽  
Vol 11 (S317) ◽  
pp. 145-152
Author(s):  
Giuseppina Battaglia

AbstractIn this review I will discuss the current status on determinations of the dark matter content and distribution in Milky Way dwarf spheroidals, for which the available data-sets allow the application of sophisticated mass modeling techniques.

2007 ◽  
Vol 75 (8) ◽  
Author(s):  
Louis E. Strigari ◽  
Savvas M. Koushiappas ◽  
James S. Bullock ◽  
Manoj Kaplinghat

2021 ◽  
Vol 502 (2) ◽  
pp. 1785-1796
Author(s):  
R A Jackson ◽  
S Kaviraj ◽  
G Martin ◽  
J E G Devriendt ◽  
A Slyz ◽  
...  

ABSTRACT In the standard ΛCDM (Lambda cold dark matter) paradigm, dwarf galaxies are expected to be dark matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local dwarfs with extremely low dark matter content appear to contradict this picture, potentially bringing the validity of the standard model into question. We use NewHorizon, a high-resolution cosmological simulation, to demonstrate that sustained stripping of dark matter, in tidal interactions between a massive galaxy and a dwarf satellite, naturally produces dwarfs that are dark matter-deficient, even though their initial dark matter fractions are normal. The process of dark matter stripping is responsible for the large scatter in the halo-to-stellar mass relation in the dwarf regime. The degree of stripping is driven by the closeness of the orbit of the dwarf around its massive companion and, in extreme cases, produces dwarfs with halo-to-stellar mass ratios as low as unity, consistent with the findings of recent observational studies. ∼30 per cent of dwarfs show some deviation from normal dark matter fractions due to dark matter stripping, with 10 per cent showing high levels of dark matter deficiency (Mhalo/M⋆ < 10). Given their close orbits, a significant fraction of dark matter-deficient dwarfs merge with their massive companions (e.g. ∼70 per cent merge over time-scales of ∼3.5 Gyr), with the dark matter-deficient population being constantly replenished by new interactions between dwarfs and massive companions. The creation of these galaxies is therefore a natural by-product of galaxy evolution and their existence is not in tension with the standard paradigm.


2004 ◽  
Vol 21 (4) ◽  
pp. 379-381
Author(s):  
Matthew Coleman

AbstractRecent years have seen a series of large-scale photometric surveys with the aim of detecting substructure in nearby dwarf galaxies. Some of these objects display a varying distribution of each stellar population, reflecting their star formation histories. Also, dwarf galaxies are dominated by dark matter, therefore luminous substructure may represent a perturbation in the underlying dark material. Substructure can also be the effect of tidal interaction, such as the disruption of the Sagittarius dSph by the Milky Way. Therefore, substructure in dwarf galaxies manifests the stellar, structural, and kinematic evolution of these objects.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
Beth Willman

The dwarf galaxy companions to the Milky Way are unique cosmological laboratories. With luminosities as low as10−7LMW, they inhabit the lowest mass dark matter halos known to host stars and are presently the most direct tracers of the distribution, mass spectrum, and clustering scale of dark matter. Their resolved stellar populations also facilitate detailed studies of their history and mass content. To fully exploit this potential requires a well-defined census of virtually invisible galaxies to the faintest possible limits and to the largest possible distances. I review the past and present impacts of survey astronomy on the census of Milky Way dwarf galaxy companions and discuss the future of finding ultra-faint dwarf galaxies around the Milky Way and beyond in wide-field survey data.


Author(s):  
Jovana Petrovic ◽  
Tijana Prodanovic ◽  
Milos Kovacevic

Diffuse gamma ray emission from the Galactic center at 2-3 GeV, as well as the 12 TeV gamma ray excess in the Galactic disk, remain open for debate and represent the missing puzzles in the complete picture of the high-energy Milky Way sky. Our papers emphasize the importance of understanding all of the populations that contribute to the diffuse gamma background in order to discriminate between the astrophysical sources such as supernova remnants and pulsars, and something that is expected to be seen in gamma rays and is much more exotic - dark matter. We analyze two separate data sets that have been measured in different energy ranges from the ?Fermi-LAT? and ?Milagro? telescopes, using these as a powerful tool to limit and test our analytical source population models. We model supernova remnants and pulsars, estimating the number of still undetected ones that contribute to the diffuse background, trying to explain both the Galactic center and the 12 TeV excess. Furthermore, we aim to predict the number of soon to be detected sources with new telescopes, such as the ?HAWC?.


2004 ◽  
Vol 217 ◽  
pp. 526-531
Author(s):  
Philippe Amram ◽  
Fréderic Bournaud ◽  
Pierre-Alain Duc

Several interacting systems exhibit at the tip of their long tidal tails massive condensations of atomic hydrogen, which may be the progenitors of Tidal Dwarf Galaxies. Because, quite often, these tails are observed edge-on, projection effects have been claimed to account for the large HI column densities measured there. Here we show that determining the velocity field all along the tidal features, one may disentangle projection effects along the line of view from real bound structures. Due to its large field of view, high spectral and 2D spatial resolutions, Fabry-Perot observations of the ionized gas are well adapted to detect a kinematical signature of either streaming motions along a bent tidal tail or of in-falling/rotating material associated with a forming TDG. Spectroscopic observations also allow to measure the dynamical masses of the TDGs that are already relaxed and check their dark matter content.


2009 ◽  
Vol 397 (4) ◽  
pp. 2015-2029 ◽  
Author(s):  
Jarosław Klimentowski ◽  
Ewa L. Łokas ◽  
Stelios Kazantzidis ◽  
Lucio Mayer ◽  
Gary A. Mamon

Sign in / Sign up

Export Citation Format

Share Document