scholarly journals Stellar population constraints on the dark matter content and origin of ultra-compact dwarf galaxies★

2008 ◽  
Vol 390 (3) ◽  
pp. 906-912 ◽  
Author(s):  
Igor V. Chilingarian ◽  
Véronique Cayatte ◽  
Gilles Bergond
2021 ◽  
Vol 502 (2) ◽  
pp. 1785-1796
Author(s):  
R A Jackson ◽  
S Kaviraj ◽  
G Martin ◽  
J E G Devriendt ◽  
A Slyz ◽  
...  

ABSTRACT In the standard ΛCDM (Lambda cold dark matter) paradigm, dwarf galaxies are expected to be dark matter-rich, as baryonic feedback is thought to quickly drive gas out of their shallow potential wells and quench star formation at early epochs. Recent observations of local dwarfs with extremely low dark matter content appear to contradict this picture, potentially bringing the validity of the standard model into question. We use NewHorizon, a high-resolution cosmological simulation, to demonstrate that sustained stripping of dark matter, in tidal interactions between a massive galaxy and a dwarf satellite, naturally produces dwarfs that are dark matter-deficient, even though their initial dark matter fractions are normal. The process of dark matter stripping is responsible for the large scatter in the halo-to-stellar mass relation in the dwarf regime. The degree of stripping is driven by the closeness of the orbit of the dwarf around its massive companion and, in extreme cases, produces dwarfs with halo-to-stellar mass ratios as low as unity, consistent with the findings of recent observational studies. ∼30 per cent of dwarfs show some deviation from normal dark matter fractions due to dark matter stripping, with 10 per cent showing high levels of dark matter deficiency (Mhalo/M⋆ < 10). Given their close orbits, a significant fraction of dark matter-deficient dwarfs merge with their massive companions (e.g. ∼70 per cent merge over time-scales of ∼3.5 Gyr), with the dark matter-deficient population being constantly replenished by new interactions between dwarfs and massive companions. The creation of these galaxies is therefore a natural by-product of galaxy evolution and their existence is not in tension with the standard paradigm.


2007 ◽  
Vol 3 (S244) ◽  
pp. 17-25 ◽  
Author(s):  
E. Zackrisson ◽  
N. Bergvall ◽  
C. Flynn ◽  
G. Östlin ◽  
G. Micheva ◽  
...  

AbstractDeep optical/near-IR surface photometry of galaxies outside the Local Group have revealed faint and very red halos around objects as diverse as disk galaxies and starbursting dwarf galaxies. The colours of these structures are too extreme to be reconciled with stellar populations similar to those seen in the stellar halos of the Milky Way or M31, and alternative explanations like dust reddening, high metallicities or nebular emission are also disfavoured. A stellar population obeying an extremely bottom-heavy initial mass function (IMF), is on the other hand consistent with all available data. Because of its high mass-to-light ratio, such a population would effectively behave as baryonic dark matter and could account for some of the baryons still missing in the low-redshift Universe. Here, we give an overview of current red halo detections, alternative explanations for the origin of the red colours and ongoing searches for red halos around types of galaxies for which this phenomenon has not yet been reported. A number of potential tests of the bottom-heavy IMF hypothesis are also discussed.


2004 ◽  
Vol 21 (4) ◽  
pp. 379-381
Author(s):  
Matthew Coleman

AbstractRecent years have seen a series of large-scale photometric surveys with the aim of detecting substructure in nearby dwarf galaxies. Some of these objects display a varying distribution of each stellar population, reflecting their star formation histories. Also, dwarf galaxies are dominated by dark matter, therefore luminous substructure may represent a perturbation in the underlying dark material. Substructure can also be the effect of tidal interaction, such as the disruption of the Sagittarius dSph by the Milky Way. Therefore, substructure in dwarf galaxies manifests the stellar, structural, and kinematic evolution of these objects.


2004 ◽  
Vol 217 ◽  
pp. 526-531
Author(s):  
Philippe Amram ◽  
Fréderic Bournaud ◽  
Pierre-Alain Duc

Several interacting systems exhibit at the tip of their long tidal tails massive condensations of atomic hydrogen, which may be the progenitors of Tidal Dwarf Galaxies. Because, quite often, these tails are observed edge-on, projection effects have been claimed to account for the large HI column densities measured there. Here we show that determining the velocity field all along the tidal features, one may disentangle projection effects along the line of view from real bound structures. Due to its large field of view, high spectral and 2D spatial resolutions, Fabry-Perot observations of the ionized gas are well adapted to detect a kinematical signature of either streaming motions along a bent tidal tail or of in-falling/rotating material associated with a forming TDG. Spectroscopic observations also allow to measure the dynamical masses of the TDGs that are already relaxed and check their dark matter content.


2021 ◽  
Vol 507 (4) ◽  
pp. 4715-4733
Author(s):  
Laura J Chang ◽  
Lina Necib

ABSTRACT The distribution of dark matter in dwarf galaxies can have important implications on our understanding of galaxy formation as well as the particle physics properties of dark matter. However, accurately characterizing the dark matter content of dwarf galaxies is challenging due to limited data and complex dynamics that are difficult to accurately model. In this paper, we apply spherical Jeans modelling to simulated stellar kinematic data of spherical, isotropic dwarf galaxies with the goal of identifying the future observational directions that can improve the accuracy of the inferred dark matter distributions in the Milky Way dwarf galaxies. We explore how the dark matter inference is affected by the location and number of observed stars as well as the line-of-sight velocity measurement errors. We use mock observation to demonstrate the difficulty in constraining the inner core/cusp of the dark matter distribution with data sets of fewer than 10 000 stars. We also demonstrate the need for additional measurements to make robust estimates of the expected dark matter annihilation signal strength. For the purpose of deriving robust indirect detection constraints, we identify Ursa Major II, Ursa Minor, and Draco as the systems that would most benefit from additional stars being observed.


2007 ◽  
Vol 3 (S244) ◽  
pp. 206-215 ◽  
Author(s):  
Ignacio Ferreras ◽  
Prasenjit Saha ◽  
Liliya L. R. Williams ◽  
Scott Burles

AbstractWe present the distribution of luminous and dark matter in a set of strong lensing (early-type) galaxies. By combining two independent techniques – stellar population synthesis and gravitational lensing – we can compare the baryonic and dark matter content in these galaxies within the regions that can be probed using the images of the lensed background source. Two samples were studied, extracted from the CASTLES and SLACS surveys. The former probes a wider range of redshifts and allows us to explore the mass distribution out to ~ 5Re. The high resolution optical images of the latter (using HST/ACS) are used to show a pixellated map of the ratio between total and baryonic matter. We find dark matter to be absent in the cores of these galaxies, with an increasing contribution at projected radii R ≳ Re. The slopes are roughly compatible with an isothermal slope (better interpreted as an adiabatically contracted NFW profile), but a large scatter in the slope exists among galaxies. There is a trend suggesting most massive galaxies have a higher content of dark matter in the regions probed by this analysis.


2015 ◽  
Vol 11 (S317) ◽  
pp. 145-152
Author(s):  
Giuseppina Battaglia

AbstractIn this review I will discuss the current status on determinations of the dark matter content and distribution in Milky Way dwarf spheroidals, for which the available data-sets allow the application of sophisticated mass modeling techniques.


2007 ◽  
Vol 75 (8) ◽  
Author(s):  
Louis E. Strigari ◽  
Savvas M. Koushiappas ◽  
James S. Bullock ◽  
Manoj Kaplinghat

1996 ◽  
pp. 435-435
Author(s):  
S. A. Pustilnik ◽  
V. A. Lipovetsky ◽  
J.-M. Martin ◽  
T. X. Thuan

Sign in / Sign up

Export Citation Format

Share Document