scholarly journals Mid-IR Imaging of Orion BN/KL: Modeling of Physical Conditions and Energy Balance

Author(s):  
Daniel Gezari ◽  
Frank Varosi ◽  
Eli Dwek ◽  
William Danchi ◽  
Jonathan Tan ◽  
...  

We have modeled two mid-infrared imaging photometry data sets to determine the spatial distribution of physical conditions in the BN/KL infrared complex. We observed the BN/KL region using the 10-m Keck I telescope and the LWS in the direct imaging mode, over a 13” × 19” field (Figure 1, left). We also modeled images obtained with COMICS (Kataza et al. 2000) at the 8.2-m SUBARU telescope, over a total field of view is 31” × 41” (Figure 1, right), in a total of nine bands: 7.8, 8.8, 9.7, 10.5, 11.7, 12.4, 18.5, 20.8 and 24.8 μm with ~1 μm bandwidth interference filters.

2018 ◽  
Vol 07 (04) ◽  
pp. 1840005 ◽  
Author(s):  
T. L. Herter ◽  
J. D. Adams ◽  
G. E. Gull ◽  
J. Schoenwald ◽  
L. D. Keller ◽  
...  

We describe the Faint Object infraRed CAmera for the SOFIA Telescope (FORCAST) which is presently operating as a facility instrument on the Stratospheric Observatory For Infrared Astronomy (SOFIA). FORCAST provides imaging and moderate resolution spectroscopy capability over the 5–40[Formula: see text][Formula: see text]m wavelength range. In imaging mode, FORCAST has a 3.4[Formula: see text] field-of-view with 0.768[Formula: see text] pixels. Using grisms, FORCAST provides long-slit low-resolution ([Formula: see text]–300) and short-slit, cross-dispersed medium-resolution spectroscopic modes ([Formula: see text]–1200) over select wavelengths. Preceded by both Spitzer and Herschel, the discovery phase space for FORCAST lies in providing unique photometric bands and/or spectroscopic coverage, higher spatial resolution and exploration of the brightest sources which typically saturate space observatories.


1998 ◽  
Vol 299 (4) ◽  
pp. 1209-1214 ◽  
Author(s):  
T. J. T. Moore ◽  
J. P. Emerson ◽  
C. J. Skinner ◽  
M. M. Meixner ◽  
J. F. Arens

1977 ◽  
Vol 36 ◽  
pp. 143-180 ◽  
Author(s):  
J.O. Stenflo

It is well-known that solar activity is basically caused by the Interaction of magnetic fields with convection and solar rotation, resulting in a great variety of dynamic phenomena, like flares, surges, sunspots, prominences, etc. Many conferences have been devoted to solar activity, including the role of magnetic fields. Similar attention has not been paid to the role of magnetic fields for the overall dynamics and energy balance of the solar atmosphere, related to the general problem of chromospheric and coronal heating. To penetrate this problem we have to focus our attention more on the physical conditions in the ‘quiet’ regions than on the conspicuous phenomena in active regions.


1998 ◽  
Vol 509 (1) ◽  
pp. 283-298 ◽  
Author(s):  
D. Y. Gezari ◽  
D. E. Backman ◽  
M. W. Werner

2020 ◽  
Vol 501 (1) ◽  
pp. 994-1001
Author(s):  
Suman Sarkar ◽  
Biswajit Pandey ◽  
Snehasish Bhattacharjee

ABSTRACT We use an information theoretic framework to analyse data from the Galaxy Zoo 2 project and study if there are any statistically significant correlations between the presence of bars in spiral galaxies and their environment. We measure the mutual information between the barredness of galaxies and their environments in a volume limited sample (Mr ≤ −21) and compare it with the same in data sets where (i) the bar/unbar classifications are randomized and (ii) the spatial distribution of galaxies are shuffled on different length scales. We assess the statistical significance of the differences in the mutual information using a t-test and find that both randomization of morphological classifications and shuffling of spatial distribution do not alter the mutual information in a statistically significant way. The non-zero mutual information between the barredness and environment arises due to the finite and discrete nature of the data set that can be entirely explained by mock Poisson distributions. We also separately compare the cumulative distribution functions of the barred and unbarred galaxies as a function of their local density. Using a Kolmogorov–Smirnov test, we find that the null hypothesis cannot be rejected even at $75{{\ \rm per\ cent}}$ confidence level. Our analysis indicates that environments do not play a significant role in the formation of a bar, which is largely determined by the internal processes of the host galaxy.


1997 ◽  
Vol 14 (2) ◽  
pp. 146-158 ◽  
Author(s):  
M. Bureau ◽  
K. C. Freeman

AbstractThe formation mechanism of boxy/peanut-shaped bulges in spiral galaxies has been a problem for many years. We briefly review here the possible formation scenarios for boxy/peanut bulges, concentrating on both the bar-buckling and accretion hypotheses, and then describe an observational program aimed at testing those various theories and studying the vertical structure of edge-on bars. Our program includes optical long-slit spectroscopy, Hiline-imaging, near-infrared imaging, and multi-band optical imaging. New spectroscopic results (both optical and Hi) are presented on seven galaxies, including five boxy/peanut-bulge spirals. Based on Kuijken & Merrifield's (1995) idea for detecting edge-on bars, we argue that these observations constitute a strong case in favour of the bar-buckling mechanism for the formation of boxy/peanut-shaped bulges, but they also raise many questions and prompt for more detailed modelling to be made. The implications of the observations concerning the determination of rotation curves and of the physical conditions in bulges are also discussed.


Author(s):  
Wenhui Xiong ◽  
Chenchen Sha ◽  
Jianping Ding

Abstract With superior capabilities for light manipulation and wavefront shaping, the metasurface recently has caught growing attention. However, the presence of chromatic aberration hinders metasurfaces, especially metalenses, from wider applications. Here, we design a polarization-independent broadband achromatic focusing metalens in the mid-infrared region, which covers continuous bands in 3-5 μm. Numerical simulation shows that different wavelengths can be focused to the same plane with a nearly diffraction-limited resolution, and can achieve an average focusing efficiency of nearly 70% in the whole bandwidth. We expect that our approach can underpin the development of integrated and mid-infrared imaging and detection.


Sign in / Sign up

Export Citation Format

Share Document