scholarly journals Spectroscopic Observations of Hundreds of Star Formation Regions in M33

Author(s):  
Xu Kong ◽  
Ning Hu ◽  
Fuzhen Cheng

AbstractStar-formation regions in nearby galaxies provide an excellent laboratory to study star formation processes, evolution of massive stars and the properties of the surrounding interstellar medium. A wealth of information can be obtained from their spectral analysis of the emission lines and the stellar continuum. Considering these, we proposed a long-term project “Spectroscopic Observations of the Star Formation Regions in Nearby Galaxies”. The primary goal of this project is to observe spectroscopy of star formation regions in 20 nearby galaxies, with the NAOC 2.16 m telescope and the Hectospec/MMT multifiber spectrograph. With the spectra of a large sample of star formation regions, combining multi-wavelength data from UV to IR, we can investigate, understand and quantify the dust extinction, star formation rate, metal abundance, and the two-dimensional distributions of stellar population properties of nearby galaxies. It will be important for a better understanding of galaxy formation. Here we report on the observations, data reduction, and analysis of the spectra of ~ 400 star formation regions in M33, via multifiber spectroscopy with Hectospec at the MMT.

2010 ◽  
Vol 6 (S270) ◽  
pp. 327-334 ◽  
Author(s):  
Frank Bigiel ◽  
Adam Leroy ◽  
Fabian Walter

AbstractHigh resolution, multi-wavelength maps of a sizeable set of nearby galaxies have made it possible to study how the surface densities of H i, H2 and star formation rate (ΣHI, ΣH2, ΣSFR) relate on scales of a few hundred parsecs. At these scales, individual galaxy disks are comfortably resolved, making it possible to assess gas-SFR relations with respect to environment within galaxies. ΣH2, traced by CO intensity, shows a strong correlation with ΣSFR and the ratio between these two quantities, the molecular gas depletion time, appears to be constant at about 2 Gyr in large spiral galaxies. Within the star-forming disks of galaxies, ΣSFR shows almost no correlation with ΣHI. In the outer parts of galaxies, however, ΣSFR does scale with ΣHI, though with large scatter. Combining data from these different environments yields a distribution with multiple regimes in Σgas – ΣSFR space. If the underlying assumptions to convert observables to physical quantities are matched, even combined datasets based on different SFR tracers, methodologies and spatial scales occupy a well define locus in Σgas – ΣSFR space.


2020 ◽  
Vol 634 ◽  
pp. A24 ◽  
Author(s):  
Nimisha Kumari ◽  
Mike J. Irwin ◽  
Bethan L. James

Context. The global Schmidt law of star formation provides a power-law relation between the surface densities of star-formation rate (SFR) and gas, and successfully explains plausible scenarios of galaxy formation and evolution. However, star formation being a multi-scale process, requires spatially-resolved analysis for a better understanding of the physics of star formation. Aims. It has been shown that the removal of a diffuse background from SFR tracers, such as Hα, far-ultraviolet (FUV), infrared, leads to an increase in the slope of the sub-galactic Schmidt relation. We reinvestigate the local Schmidt relations in nine nearby spiral galaxies taking into account the effect of inclusion and removal of diffuse background in SFR tracers as well as in the atomic gas. Methods. We used multiwavelength data obtained as part of the Spitzer Infrared Nearby Galaxies Survey, Key Insights on Nearby Galaxies: a Far-Infrared Survey with Herschel, The H I Nearby Galaxy Survey, and HERA CO-Line Extragalactic Survey. Making use of a novel split of the overall light distribution as a function of spatial scale, we subtracted the diffuse background in the SFR tracers as well as the atomic gas. Using aperture photometry, we study the Schmidt relations on background subtracted and unsubtracted data at physical scales varying between 0.5–2 kpc. Results. The fraction of diffuse background varies from galaxy to galaxy and accounts to ∼34% in Hα, ∼43% in FUV, ∼37% in 24 μm, and ∼75% in H I on average. We find that the inclusion of diffuse background in SFR tracers leads to a linear molecular gas Schmidt relation and a bimodal total gas Schmidt relation. However, the removal of diffuse background in SFR tracers leads to a super-linear molecular gas Schmidt relation. A further removal of the diffuse background from atomic gas results in a slope ∼1.4 ± 0.1, which agrees with dynamical models of star formation accounting for flaring effects in the outer regions of galaxies.


2014 ◽  
Vol 38 (4) ◽  
pp. 427-438 ◽  
Author(s):  
KONG Xu ◽  
LIN Lin ◽  
LI Jin-rong ◽  
ZHOU Xu ◽  
ZOU Hu ◽  
...  

2020 ◽  
Vol 500 (3) ◽  
pp. 3394-3412
Author(s):  
Steven R Furlanetto

ABSTRACT In recent years, simple models of galaxy formation have been shown to provide reasonably good matches to available data on high-redshift luminosity functions. However, these prescriptions are primarily phenomenological, with only crude connections to the physics of galaxy evolution. Here, we introduce a set of galaxy models that are based on a simple physical framework but incorporate more sophisticated models of feedback, star formation, and other processes. We apply these models to the high-redshift regime, showing that most of the generic predictions of the simplest models remain valid. In particular, the stellar mass–halo mass relation depends almost entirely on the physics of feedback (and is thus independent of the details of small-scale star formation) and the specific star formation rate is a simple multiple of the cosmological accretion rate. We also show that, in contrast, the galaxy’s gas mass is sensitive to the physics of star formation, although the inclusion of feedback-driven star formation laws significantly changes the naive expectations. While these models are far from detailed enough to describe every aspect of galaxy formation, they inform our understanding of galaxy formation by illustrating several generic aspects of that process, and they provide a physically grounded basis for extrapolating predictions to faint galaxies and high redshifts currently out of reach of observations. If observations show violations from these simple trends, they would indicate new physics occurring inside the earliest generations of galaxies.


2019 ◽  
Vol 15 (S356) ◽  
pp. 295-298
Author(s):  
Betelehem Bilata-Woldeyes ◽  
Mirjana Pović ◽  
Zeleke Beyoro-Amado ◽  
Tilahun Getachew-Woreta ◽  
Shimeles Terefe

AbstractStudying the morphology of a large sample of active galaxies at different wavelengths and comparing it with active galactic nuclei (AGN) properties, such as black hole mass (MBH) and Eddington ratio (λEdd), can help us in understanding better the connection between AGN and their host galaxies and the role of nuclear activity in galaxy formation and evolution. By using the BAT-SWIFT hard X-ray public data and by extracting those parameters measured for AGN and by using other public catalogues for parameters such as stellar mass (M*), star formation rate (SFR), bolometric luminosity (Lbol), etc., we studied the multiwavelength morphological properties of host galaxies of ultra-hard X-ray detected AGN and their correlation with other AGN properties. We found that ultra hard X-ray detected AGN can be hosted by all morphological types, but in larger fractions (42%) they seem to be hosted by spirals in optical, to be quiet in radio, and to have compact morphologies in X-rays. When comparing morphologies with other galaxy properties, we found that ultra hard X-ray detected AGN follow previously obtained relations. On the SFR vs. stellar mass diagram, we found that although the majority of sources are located below the main sequence (MS) of star formation (SF), still non-negligible number of sources, with diverse morphologies, is located on and/or above the MS, suggesting that AGN feedback might have more complex influence on the SF in galaxies than simply quenching it, as it was suggested in some of previous studies.


2020 ◽  
Vol 493 (2) ◽  
pp. 1888-1906 ◽  
Author(s):  
Bryan A Terrazas ◽  
Eric F Bell ◽  
Annalisa Pillepich ◽  
Dylan Nelson ◽  
Rachel S Somerville ◽  
...  

ABSTRACT Supermassive black hole feedback is thought to be responsible for the lack of star formation, or quiescence, in a significant fraction of galaxies. We explore how observable correlations between the specific star formation rate (sSFR), stellar mass (Mstar), and black hole mass (MBH) are sensitive to the physics of black hole feedback in a galaxy formation model. We use the IllustrisTNG simulation suite, specifically the TNG100 simulation and 10 model variations that alter the parameters of the black hole model. Focusing on central galaxies at z = 0 with Mstar > 1010 M⊙, we find that the sSFR of galaxies in IllustrisTNG decreases once the energy from black hole kinetic winds at low accretion rates becomes larger than the gravitational binding energy of gas within the galaxy stellar radius. This occurs at a particular MBH threshold above which galaxies are found to sharply transition from being mostly star forming to mostly quiescent. As a result of this behaviour, the fraction of quiescent galaxies as a function of Mstar is sensitive to both the normalization of the MBH–Mstar relation and the MBH threshold for quiescence in IllustrisTNG. Finally, we compare these model results to observations of 91 central galaxies with dynamical MBH measurements with the caveat that this sample is not representative of the whole galaxy population. While IllustrisTNG reproduces the observed trend that quiescent galaxies host more massive black holes, the observations exhibit a broader scatter in MBH at a given Mstar and show a smoother decline in sSFR with MBH.


2020 ◽  
Vol 492 (2) ◽  
pp. 2835-2846 ◽  
Author(s):  
Sultan Hassan ◽  
Kristian Finlator ◽  
Romeel Davé ◽  
Christopher W Churchill ◽  
J Xavier Prochaska

ABSTRACT We examine the properties of damped Lyman-α absorbers (DLAs) emerging from a single set of cosmological initial conditions in two state-of-the-art cosmological hydrodynamic simulations: simba and technicolor dawn. The former includes star formation and black hole feedback treatments that yield a good match with low-redshift galaxy properties, while the latter uses multifrequency radiative transfer to model an inhomogeneous ultraviolet background (UVB) self-consistently and is calibrated to match the Thomson scattering optical depth, UVB amplitude, and Ly α forest mean transmission at z > 5. Both simulations are in reasonable agreement with the measured stellar mass and star formation rate functions at z ≥ 3, and both reproduce the observed neutral hydrogen cosmological mass density, $\Omega _{\rm H\, \small{I}}(z)$. However, the DLA abundance and metallicity distribution are sensitive to the galactic outflows’ feedback and the UVB amplitude. Adopting a strong UVB and/or slow outflows underproduces the observed DLA abundance, but yields broad agreement with the observed DLA metallicity distribution. By contrast, faster outflows eject metals to larger distances, yielding more metal-rich DLAs whose observational selection may be more sensitive to dust bias. The DLA metallicity distribution in models adopting an H2-regulated star formation recipe includes a tail extending to [M/H] ≪ −3, lower than any DLA observed to date, owing to curtailed star formation in low-metallicity galaxies. Our results show that DLA observations play an important role in constraining key physical ingredients in galaxy formation models, complementing traditional ensemble statistics such as the stellar mass and star formation rate functions.


Author(s):  
Lucia Marchetti ◽  
Mattia Vaccari ◽  
Alberto Franceschini

AbstractWe exploit the Herschel Extragalactic Multi-Tiered Survey (HerMES) dataset along with ancillary multi-wavelength photometry and spectroscopy from the Spitzer Data Fusion to provide the most accurate determination to date of the local (0.02<z<0.5) Far-Infrared Luminosity and Star Formation Rate Function. We present and compare our results with model predictions as well as other multi-wavelength estimates of the local star formation rate density.


2019 ◽  
Vol 15 (S352) ◽  
pp. 194-198
Author(s):  
Christina C. Williams

AbstractWe discuss the serendipitous discovery of a dusty high-redshift galaxy in a small (8 arcmin2) ALMA 3-mm survey Williams et al. (2019). The galaxy was previously unknown and is absent from existing multi-wavelength catalogs (“ALMA-only”). Using the ALMA position as prior, we perform forced deblended photometry to constrain its spectral energy distribution. The spectral energy distribution is well described by a massive (M* = 1010.8 M⊙) and highly obscured (AV ∼ 4) galaxy at redshift z = 5.5 ± 1.1 with star formation rate ∼ 300 M⊙yr−1. Our small survey area implies an uncertain but large contribution to the cosmic star formation rate density, similar to the contribution from all ultraviolet-selected galaxies combined at this redshift. This galaxy likely traces an abundant population of massive galaxies absent from current samples of infrared-selected or sub-millimeter galaxies, but with larger space densities, higher duty cycles, and significant contribution to the cosmic star-formation rate and stellar mass densities.


1996 ◽  
Vol 157 ◽  
pp. 54-62
Author(s):  
Tim G. Hawarden ◽  
J. H. Huang ◽  
Q. S. Gu

AbstractAmongst relatively undisturbed spiral galaxies of type ≤ Sc barred morphology is unquestionably associated with powerful mid- and Far-IR emission. On the other hand, even amongst early type galaxies, those with LFIR/LB < 1/3 exhibit no association of high relative FIR luminosity with barred morphology, but some association of IR colors resembling those of star formation regions (SFRs). Amongst systems with LFIR/LB < 0.1 this ratio may be anti-correlated with barredness. It appears that enhanced IR emission from those galaxies whose star formation rate is currently elevated by the the bar translates them into the group with higher FIR-to-optical luminosity ratios. Depletion of extended nearnuclear gas and dust, once the bar has swept up the currently-available supplies, may reduce the fraction of the background stellar radiation field which can be converted to FIR radiation in the inner, most luminous parts of the galaxy. Thus, after the starburst has subsided, such galaxies may be less FIR-luminous than unbarred systems. Several uncertainties remain: it is still not clear whether barred morphology is a necessary condition for the generation of a starburst in an otherwise undisturbed galaxy, while evidence as to the effect of differing bar strengths is conflicting.


Sign in / Sign up

Export Citation Format

Share Document