scholarly journals Infrared Emission from Barred Spiral Galaxies

1996 ◽  
Vol 157 ◽  
pp. 54-62
Author(s):  
Tim G. Hawarden ◽  
J. H. Huang ◽  
Q. S. Gu

AbstractAmongst relatively undisturbed spiral galaxies of type ≤ Sc barred morphology is unquestionably associated with powerful mid- and Far-IR emission. On the other hand, even amongst early type galaxies, those with LFIR/LB < 1/3 exhibit no association of high relative FIR luminosity with barred morphology, but some association of IR colors resembling those of star formation regions (SFRs). Amongst systems with LFIR/LB < 0.1 this ratio may be anti-correlated with barredness. It appears that enhanced IR emission from those galaxies whose star formation rate is currently elevated by the the bar translates them into the group with higher FIR-to-optical luminosity ratios. Depletion of extended nearnuclear gas and dust, once the bar has swept up the currently-available supplies, may reduce the fraction of the background stellar radiation field which can be converted to FIR radiation in the inner, most luminous parts of the galaxy. Thus, after the starburst has subsided, such galaxies may be less FIR-luminous than unbarred systems. Several uncertainties remain: it is still not clear whether barred morphology is a necessary condition for the generation of a starburst in an otherwise undisturbed galaxy, while evidence as to the effect of differing bar strengths is conflicting.

2015 ◽  
Vol 11 (S315) ◽  
pp. 236-239
Author(s):  
Johan H. Knapen ◽  
Mauricio Cisternas ◽  
Miguel Querejeta

AbstractWe investigate the influence of interactions on the star formation by studying a sample of almost 1500 of the nearest galaxies, all within a distance of ~45 Mpc. We define the massive star formation rate (SFR), as measured from far-IR emission, and the specific star formation rate (SSFR), which is the former quantity normalized by the stellar mass of the galaxy, and explore their distribution with morphological type and with stellar mass. We then calculate the relative enhancement of these quantities for each galaxy by normalizing them by the median SFR and SSFR values of individual control populations of similar non-interacting galaxies. We find that both SFR and SSFR are enhanced in interacting galaxies, and more so as the degree of interaction is higher. The increase is, however, moderate, reaching a maximum of a factor of 1.9 for the highest degree of interaction (mergers). The SFR and SSFR are enhanced statistically in the population, but in most individual interacting galaxies they are not enhanced at all. We discuss how those galaxies with the largest SFR and/or SSFR enhancement can be defined as starbursts. We argue that this study, based on a representative sample of nearby galaxies, should be used to place constraints on studies based on samples of galaxies at larger distances.


2019 ◽  
Vol 491 (1) ◽  
pp. 398-408 ◽  
Author(s):  
Smriti Mahajan ◽  
Kriti Kamal Gupta ◽  
Rahul Rana ◽  
M J I Brown ◽  
S Phillipps ◽  
...  

ABSTRACT We use multiwavelength data from the Galaxy And Mass Assembly (GAMA) survey to explore the cause of red optical colours in nearby (0.002 < z < 0.06) spiral galaxies. We show that the colours of red spiral galaxies are a direct consequence of some environment-related mechanism(s) that has removed dust and gas, leading to a lower star formation rate. We conclude that this process acts on long time-scales (several Gyr) due to a lack of morphological transformation associated with the transition in optical colour. The specific star formation rate (sSFR) and dust-to-stellar mass ratio of red spiral galaxies is found to be statistically lower than blue spiral galaxies. On the other hand, red spirals are on average 0.9 dex more massive, and reside in environments 2.6 times denser than their blue counterparts. We find no evidence of excessive nuclear activity, or higher inclination angles to support these as the major causes for the red optical colours seen in ≳47 per cent of all spirals in our sample. Furthermore, for a small subsample of our spiral galaxies that are detected in H i, we find that the SFR of gas-rich red spiral galaxies is lower by ∼1 dex than their blue counterparts.


1987 ◽  
Vol 115 ◽  
pp. 633-633
Author(s):  
B. Guiderdoni

From a sample of Virgo Cluster and “field” disk galaxies, it is shown that a critical value of the HI surface density discriminates between RDDO anemic and “healthy” spirals. Below this threshold, at least massive stars do not form any more and the galaxy gets the anemic appearance. The influence of the HI content on the global star formation rate is discussed in the context of present models (Elmegreen 1979, Seiden and Gerola 1979, Dopita 1985), as well as the fate of disks in cluster and “field” environments. The existence of this threshold is an issue for the problem caused by the short gas consumption time scales derived from the observations of spiral galaxies.


2010 ◽  
Vol 6 (S270) ◽  
pp. 503-506
Author(s):  
Pedro Colín ◽  
Vladimir Avila-Reese ◽  
Octavio Valenzuela

AbstractCosmological Adaptive Mesh Refinement simulations are used to study the specific star formation rate (sSFR=SSF/Ms) history and the stellar mass fraction, fs=Ms/MT, of small galaxies, total masses MT between few × 1010 M⊙ to few ×1011 M⊙. Our results are compared with recent observational inferences that show the so-called “downsizing in sSFR” phenomenon: the less massive the galaxy, the higher on average is its sSFR, a trend seen at least since z ~ 1. The simulations are not able to reproduce this phenomenon, in particular the high inferred values of sSFR, as well as the low values of fs constrained from observations. The effects of resolution and sub-grid physics on the SFR and fs of galaxies are discussed.


2018 ◽  
Vol 611 ◽  
pp. A72 ◽  
Author(s):  
Marita Krause ◽  
Judith Irwin ◽  
Theresa Wiegert ◽  
Arpad Miskolczi ◽  
Ancor Damas-Segovia ◽  
...  

Aim. The vertical halo scale height is a crucial parameter to understand the transport of cosmic-ray electrons (CRE) and their energy loss mechanisms in spiral galaxies. Until now, the radio scale height could only be determined for a few edge-on galaxies because of missing sensitivity at high resolution.Methods. We developed a sophisticated method for the scale height determination of edge-on galaxies. With this we determined the scale heights and radial scale lengths for a sample of 13 galaxies from the CHANG-ES radio continuum survey in two frequency bands.Results. The sample average values for the radio scale heights of the halo are 1.1 ± 0.3 kpc in C-band and 1.4 ± 0.7 kpc in L-band. From the frequency dependence analysis of the halo scale heights we found that the wind velocities (estimated using the adiabatic loss time) are above the escape velocity. We found that the halo scale heights increase linearly with the radio diameters. In order to exclude the diameter dependence, we defined a normalized scale height h˜ which is quite similar for all sample galaxies at both frequency bands and does not depend on the star formation rate or the magnetic field strength. However, h˜ shows a tight anticorrelation with the mass surface density.Conclusions. The sample galaxies with smaller scale lengths are more spherical in the radio emission, while those with larger scale lengths are flatter. The radio scale height depends mainly on the radio diameter of the galaxy. The sample galaxies are consistent with an escape-dominated radio halo with convective cosmic ray propagation, indicating that galactic winds are a widespread phenomenon in spiral galaxies. While a higher star formation rate or star formation surface density does not lead to a higher wind velocity, we found for the first time observational evidence of a gravitational deceleration of CRE outflow, e.g. a lowering of the wind velocity from the galactic disk.


1987 ◽  
Vol 115 ◽  
pp. 647-647
Author(s):  
U. Klein ◽  
J. Heidmann ◽  
R. Wielebinski ◽  
E. Wunderlich

The four clumpy irregular galaxies Mkr 8, 296,297 and 325 have been observed by IRAS. All galaxies have been detected in at least two of the four detector bands. The ratios of the 100 to 60-m flux densities are comparable to those of HII regions or violently star forming galaxies. The average star formation rate in clumpy irregular galaxies is of the order of a few solar masses per year (based on their average far-infrared luminosity and a Hubble constant of 75 km s−1 Mpc−1.


2021 ◽  
Vol 7 (2) ◽  
pp. 49-57
Author(s):  
D. N. Chhatkuli ◽  
S. Paudel ◽  
A. K. Gautam ◽  
B. Aryal

We studied the spectroscopic properties of the low redshift (z = 0.0130) interacting dwarf galaxy SDSS J114818.18-013823.7. It is a compact galaxy of half-light radius 521 parsec. It’s r-band absolute magnitude is -16.71 mag. Using a publicly available optical spectrum from the Sloan Sky Survey data archive, we calculated star-formation rate, emission line metallicity, and dust extinction of the galaxy. Star formation rate (SFR) due to Hα is found to be 0.118 Mʘ year-1 after extinction correction. The emission-line metallicity, 12+log(O/H), is 8.13 dex. Placing these values in the scaling relation of normal galaxies, we find that SDSS J114818.18-013823.7 is a significant outlier from both size-magnitude relation and SFR-B-band absolute relation. Although SDSS J114818.18-013823.7 possess enhance rate of star-formation, the current star-formation activity can persist several Giga years in the future at the current place and it remains compact.


Author(s):  
Angus Mok ◽  
Christine Wilson

AbstractWe studied molecular gas properties in a sample of 98 Hi - flux selected spiral galaxies within ~ 25 Mpc using the CO J = 3 − 2 line, observed with the JCMT, and subdivided into isolated, group, and Virgo subsamples. We find a larger mean H2 mass in the Virgo galaxies compared to group galaxies, despite their lower mean Hi mass. Combining our data with complementary Hα star formation rate measurements, Virgo galaxies have a longer molecular gas depletion times compared to group galaxies, perhaps due to heating processes in the cluster environment or differences in the turbulent pressure.


2019 ◽  
Vol 14 (S353) ◽  
pp. 262-263
Author(s):  
Shuai Feng ◽  
Shi-Yin Shen ◽  
Fang-Ting Yuan

AbstractThe interaction between galaxies is believed to be the main origin of the peculiarities of galaxies. It can disturb not only the morphology but also the kinematics of galaxies. These disturbed and asymmetric features are the indicators of galaxy interaction. We study the velocity field of ionized gas in galaxy pairs based on MaNGA survey. Using the kinemetry package, we fit the velocity field and quantify the degree of kinematic asymmetry. We find that the fraction of high kinematic asymmetry is much higher for galaxy pairs with dp⩽30h−1kpc. Moreover, compared to a control sample of single galaxies, we find that the star formation rate is enhanced in paired galaxies with high kinematic asymmetry. For paired galaxies with low kinematic asymmetry, no significant SFR enhancement has been found. The galaxy pairs with high kinematic asymmetry are more likely to be real interacting galaxies rather than projected pairs.


1983 ◽  
Vol 100 ◽  
pp. 135-136
Author(s):  
L. Carrasco ◽  
A. Serrano

We derive the radial distribution of the specific angular momentum j=J/M, for the gas in M31, M51 and the galaxy, objects for which well observed unsmoothed rotation curves are available in the literature. We find the specific angular momentum to be anti-correlated with the present stellar formation rate, i.e. minima of spin angular momentum correspond to the loci of spiral arms. We find that the stellar formation rate is an inverse function of j. We derive new values of Oort's A constant for the arm and interarm regions in the solar neighborhood.


Sign in / Sign up

Export Citation Format

Share Document