scholarly journals Thousands of Stellar SiO masers in the Galactic center: The Bulge Asymmetries and Dynamic Evolution (BAaDE) survey

2016 ◽  
Vol 11 (S322) ◽  
pp. 103-106 ◽  
Author(s):  
Loránt O. Sjouwerman ◽  
Ylva M. Pihlström ◽  
R. Michael Rich ◽  
Mark R. Morris ◽  
Mark J Claussen

AbstractA radio survey of red giant SiO sources in the inner Galaxy and bulge is not hindered by extinction. Accurate stellar velocities (<1 km/s) are obtained with minimal observing time (<1 min) per source. Detecting over 20,000 SiO maser sources yields data comparable to optical surveys with the additional strength of a much more thorough coverage of the highly obscured inner Galaxy. Modeling of such a large sample would reveal dynamical structures and minority populations; the velocity structure can be compared to kinematic structures seen in molecular gas, complex orbit structure in the bar, or stellar streams resulting from recently infallen systems. Our Bulge Asymmetries and Dynamic Evolution (BAaDE) survey yields bright SiO masers suitable for follow-up Galactic orbit and parallax determination using VLBI.Here we outline our early VLA observations at 43 GHz in the northern bulge and Galactic plane (0<l°<250), and ALMA observations at 86 GHz in the southern bulge (250<l°<360). We report a preliminary overall 70% detection rate in our color-selected MSX sources.

2011 ◽  
Vol 28 (2) ◽  
pp. 171-176 ◽  
Author(s):  
P. P. Kronberg ◽  
K. J. Newton-McGee

AbstractWe apply a new, expanded compilation of extragalactic source Faraday rotation measures (RM) to investigate the broad underlying magnetic structure of the Galactic disk at latitudes ∣b∣ ≲15° over all longitudes l, where our total number of RMs is comparable to those in the combined Canadian Galactic Plane Survey (CGPS) at ∣b∣ < 4° and the Southern Galactic Plane (SGPS) ∣b∣<1.5°. We report newly revealed, remarkably coherent patterns of RM at ∣b∣≲15° from l∼270° to ∼90° and RM(l) features of unprecedented clarity that replicate in l with opposite sign on opposite sides of the Galactic center. They confirm a highly patterned bisymmetric field structure toward the inner disc, an axisymmetic pattern toward the outer disc, and a very close coupling between the CGPS/SGPS RMs at ∣b∣≲3° (‘mid-plane’) and our new RMs up to ∣b∣∼15° (‘near-plane’). Our analysis also shows the vertical height of the coherent component of the disc field above the Galactic disc's mid-plane—to be ∼1.5 kpc out to ∼6 kpc from the Sun. This identifies the approximate height of a transition layer to the halo field structure. We find no RM sign change across the plane within ∣b∣∼15° in any longitude range. The prevailing disc field pattern and its striking degree of large-scale ordering confirm that our side of the Milky Way has a very organized underlying magnetic structure, for which the inward spiral pitch angle is 5.5°±1° at all ∣b∣ up to ∼12° in the inner semicircle of Galactic longitudes. It decreases to ∼0° toward the anticentre.


2008 ◽  
Vol 4 (S259) ◽  
pp. 455-466 ◽  
Author(s):  
JinLin Han

AbstractThe magnetic structure in the Galactic disk, the Galactic center and the Galactic halo can be delineated more clearly than ever before. In the Galactic disk, the magnetic structure has been revealed by starlight polarization within 2 or 3 kpc of the Solar vicinity, by the distribution of the Zeeman splitting of OH masers in two or three nearby spiral arms, and by pulsar dispersion measures and rotation measures in nearly half of the disk. The polarized thermal dust emission of clouds at infrared, mm and submm wavelengths and the diffuse synchrotron emission are also related to the large-scale magnetic field in the disk. The rotation measures of extragalactic radio sources at low Galactic latitudes can be modeled by electron distributions and large-scale magnetic fields. The statistical properties of the magnetized interstellar medium at various scales have been studied using rotation measure data and polarization data. In the Galactic center, the non-thermal filaments indicate poloidal fields. There is no consensus on the field strength, maybe mG, maybe tens of μG. The polarized dust emission and much enhanced rotation measures of background radio sources are probably related to toroidal fields. In the Galactic halo, the antisymmetric RM sky reveals large-scale toroidal fields with reversed directions above and below the Galactic plane. Magnetic fields from all parts of our Galaxy are connected to form a global field structure. More observations are needed to explore the untouched regions and delineate how fields in different parts are connected.


2012 ◽  
Vol 8 (S287) ◽  
pp. 98-102
Author(s):  
Kazuhito Motogi ◽  
Kazuo Sorai ◽  
Kenta Fujisawa ◽  
Koichiro Sugiyama ◽  
Mareki Honma

AbstractThe water maser site associated with G353.273+0.641 is classified as a dominant blueshifted H2O maser, which shows an extremely wide velocity range (± 100 km s−1) with almost all flux concentrated in the highly blueshifted emission. The previous study has proposed that this peculiar H2O maser site is excited by a pole-on jet from high mass protostellar object. We report on the monitoring of 22-GHz H2O maser emission from G353.273+0.641 with the VLBI Exploration of Radio Astrometry (VERA) and the Tomakamai 11-m radio telescope. Our VLBI imaging has shown that all maser features are distributed within a very small area of 200 × 200 au2, in spite of the wide velocity range (> 100 km s−1). The light curve obtained by weekly single-dish monitoring shows notably intermittent variation. We have detected three maser flares during three years. Frequent VLBI monitoring has revealed that these flare activities have been accompanied by a significant change of the maser alignments. We have also detected synchronized linear acceleration (−5 km s−1yr−1) of two isolated velocity components, suggesting a lower-limit momentum rate of 10−3 M⊙ km s−1yr−1 for the maser acceleration. All our results support the previously proposed pole-on jet scenario, and finally, a radio jet itself has been detected in our follow-up ATCA observation. If highly intermittent maser flares directly reflect episodic jet-launchings, G353.273+0.641 and similar dominant blueshifted water maser sources can be suitable targets for a time-resolved study of high mass protostellar jet.


2017 ◽  
Vol 13 (S336) ◽  
pp. 176-179
Author(s):  
K. Immer ◽  
M. Reid ◽  
A. Brunthaler ◽  
K. Menten ◽  
Q. Zhang ◽  
...  

AbstractThe Central Molecular Zone (CMZ), the inner 450 pc of our Galaxy, is an exceptional region where the volume and column densities, gas temperatures, velocity dispersions, etc. are much higher than in the Galactic plane. It has been suggested that the formation of stars and clusters in this area is related to the orbital dynamics of the gas. The complex kinematic structure of the molecular gas was revealed by spectral line observations. However, these results are limited to the line-of-sight-velocities. To fully understand the motions of the gas within the CMZ, we have to know its location in 6D space (3D location + 3D motion). Recent orbital models have tried to explain the inflow of gas towards and its kinematics within this region. With parallax and proper motion measurements of masers in the CMZ we can discriminate among these models and constrain how our Galactic Center is fed with gas.


1984 ◽  
Vol 110 ◽  
pp. 335-338
Author(s):  
M. H. Schneps ◽  
M. J. Reid ◽  
J. M. Moran ◽  
R. Genzel ◽  
D. Downes ◽  
...  

We report preliminary results of a long term spectral line VLBI experiment to observe internal proper motions of water maser sources in the vicinity of newly formed stars. This technique yields a picture of the three-dimensional kinematics of the region and a measure of the distance to the source. First results from the galactic center source SGR B2 are presented.


1980 ◽  
Vol 87 ◽  
pp. 397-404 ◽  
Author(s):  
Arno A. Penzias

While an examination of the available data reveals some seemingly contradictory results, a general framework having the following outlines can be put forward:1. With the exception of the two galactic center sources SgrA and SgrB, the relative isotopic abundances exhibited by the giant molecular clouds in our Galaxy exhibit few, if any, significant variations from the values obtained by averaging the data from all these sources.2. The 13C/12C and 14N/15N abundance ratios are ∼130% and ∼150%, respectively, of their terrestrial values throughout the galactic plane and somewhat higher, ∼300%, near the galactic center.3. The 16O/18O and 17O/18O abundance ratios are ∼130% and ∼160%, respectively, of their terrestrial values throughout the Galaxy, although the former may be somewhat lower near the galactic center.4. The S and Si isotopes have generally terrestrial abundances.


1988 ◽  
Vol 126 ◽  
pp. 37-48
Author(s):  
Robert Zinn

Harlow Shapley (1918) used the positions of globular clusters in space to determine the dimensions of our Galaxy. His conclusion that the Sun does not lie near the center of the Galaxy is widely recognized as one of the most important astronomical discoveries of this century. Nearly as important, but much less publicized, was his realization that, unlike stars, open clusters, HII regions and planetary nebulae, globular clusters are not concentrated near the plane of the Milky Way. His data showed that the globular clusters are distributed over very large distances from the galactic plane and the galactic center. Ever since this discovery that the Galaxy has a vast halo containing globular clusters, it has been clear that these clusters are key objects for probing the evolution of the Galaxy. Later work, which showed that globular clusters are very old and, on average, very metal poor, underscored their importance. In the spirit of this research, which started with Shapley's, this review discusses the characteristics of the globular cluster system that have the most bearing on the evolution of the Galaxy.


1989 ◽  
Vol 120 ◽  
pp. 132-133
Author(s):  
R. Rubin ◽  
M. Morris ◽  
E.F. Erickson ◽  
S. Colgan ◽  
J. Simpson

The remarkable filament system seen in radio observations in the vicinity of the galactic center includes two thin filaments which arch away from the galactic plane (E.G. Yusef-Zadem et al 1984). The brightest part of each of these thermal structures is located at GO.10+0.02 and GO.07+0.04. Morris and Yusef-Zadem (1989) reason that photoionization by OB stars is unlikely on geometrical and morphological grounds. They suggest a magnetohydrodynamic mechanism to account for the radio emission and ionization. Erickson et al. (1968) were able to explain most of their observations of the far infrared (FIR) fine structure line emission from these locations in terms of a photoionization model.


1978 ◽  
Vol 79 ◽  
pp. 95-96
Author(s):  
Dennis J. Hegyi

A halo surrounding the edge-on Sb giant spiral galaxy NGC 4565 has been detected in the spectral band 3800–8600 A using a new photometric instrument, an annular scanning photometer. the halo is brightest close to the galactic nucleus and decreases in brightness until it reaches a level of 1 part in 1000 of the sky at a galactic radius of 6.1 arc minutes or 43 kpc from the galactic center. Because the scan path of the ASP is circular, this point corresponds to a distance of 34 kpc from the galactic plane. For comparison, the Holmberg radius of NGC 4565 is equal to 7 arc minutes or 50 kpc. Preliminary V-I photometric data indicate that the halo becomes redder with increasing galactic radius, exceeding V-I = 1.9. Based on a variety of possible origins for the light, it is concluded that the light is due to stars.


Sign in / Sign up

Export Citation Format

Share Document