scholarly journals Forecasting Solar Energetic Particle Events and Associated False Alarms

2017 ◽  
Vol 13 (S335) ◽  
pp. 324-327
Author(s):  
Bill Swalwell ◽  
Silvia Dalla ◽  
Robert Walsh

AbstractBecause of the significant dangers they pose, accurate forecasting of Solar Energetic Particle (SEP) events is vital. Whilst it has long been known that SEP-production is associated with high-energy solar events, forecasting algorithms based upon the observation of these types of solar event suffer from high false alarm rates. Here we analyse the parameters of 4 very high energy solar events which were false alarms, with a view to reaching an understanding as to why SEPs were not detected at Earth. We find that in each case at least two factors were present which have been shown to be detrimental to SEP production.


2019 ◽  
Author(s):  
Allan Labrador ◽  
Luke Sollitt ◽  
Christina Cohen ◽  
Eric Christian ◽  
Alan C. Cummings ◽  
...  


2017 ◽  
Author(s):  
Allan Labrador ◽  
Sollitt Luke ◽  
Cohen Christina ◽  
Cummings Alan ◽  
Leske Richard ◽  
...  




1964 ◽  
Vol 82 (1) ◽  
pp. 3-81 ◽  
Author(s):  
Evgenii L. Feinberg ◽  
Dmitrii S. Chernavskii




2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Whitmore ◽  
R. I. Mackay ◽  
M. van Herk ◽  
J. K. Jones ◽  
R. M. Jones

AbstractThis paper presents the first demonstration of deeply penetrating dose delivery using focused very high energy electron (VHEE) beams using quadrupole magnets in Monte Carlo simulations. We show that the focal point is readily modified by linearly changing the quadrupole magnet strength only. We also present a weighted sum of focused electron beams to form a spread-out electron peak (SOEP) over a target region. This has a significantly reduced entrance dose compared to a proton-based spread-out Bragg peak (SOBP). Very high energy electron (VHEE) beams are an exciting prospect in external beam radiotherapy. VHEEs are less sensitive to inhomogeneities than proton and photon beams, have a deep dose reach and could potentially be used to deliver FLASH radiotherapy. The dose distributions of unfocused VHEE produce high entrance and exit doses compared to other radiotherapy modalities unless focusing is employed, and in this case the entrance dose is considerably improved over existing radiations. We have investigated both symmetric and asymmetric focusing as well as focusing with a range of beam energies.



Sign in / Sign up

Export Citation Format

Share Document