Mapping the dark matter of NGC 2974: Combination of stellar & cold gas kinematics

2019 ◽  
Vol 14 (S353) ◽  
pp. 253-254
Author(s):  
M. Yang ◽  
L. Zhu ◽  
A. Weijmans ◽  
G. van de Ven ◽  
N. F. Boardman ◽  
...  

AbstractWe present a new method to combine cold gas kinematics with the stellar kinematics modelled with the Schwarzschild orbit-superposition technique, and its application to the lenticular galaxy NGC 2974. The combination of stellar and cold gas kinematics significantly improves the constraints on the measured dark matter profile: assuming a generalised NFW halo profile, we find a cuspy inner halo slope for NGC 2974.

2019 ◽  
Vol 491 (3) ◽  
pp. 4221-4231 ◽  
Author(s):  
Meng Yang ◽  
Ling Zhu ◽  
Anne-Marie Weijmans ◽  
Glenn van de Ven ◽  
Nicholas Boardman ◽  
...  

ABSTRACT We present an orbit-based method of combining stellar and cold gas kinematics to constrain the dark matter profile of early-type galaxies. We apply this method to early-type galaxy NGC 2974, using Pan-STARRS imaging and SAURON stellar kinematics to model the stellar orbits, and introducing H i kinematics from VLA observation as a tracer of the gravitational potential. The introduction of the cold gas kinematics shows a significant effect on the confidence limits of especially the dark halo properties: we exclude more than $95{{\ \rm per\ cent}}$ of models within the 1σ confidence level of Schwarzschild modelling with only stellar kinematics, and reduce the relative uncertainty of the dark matter fraction significantly to $10{{\ \rm per\ cent}}$ within 5Re. Adopting a generalized Navarro–Frenk–White (NFW) dark matter profile, we measure a shallow cuspy inner slope of $0.6^{+0.2}_{-0.3}$ when including the cold gas kinematics in our model. We cannot constrain the inner slope with the stellar kinematics alone.


2019 ◽  
Vol 14 (S353) ◽  
pp. 248-252
Author(s):  
Takafumi Tsukui ◽  
Satoru Iguchi ◽  
Kyoko Onishi

AbstractIn order to understand the interaction between dark matter and baryonic matter in the galaxy evolution history, it is fundamental to constrain dark matter (DM) distribution in galaxies. However, it is difficult to constrain DM profile in the central region of early type galaxy because of the lack of extended neutral hydrogen gas and the degeneracy between dynamical stellar M/L and DM profile. To resolve this difficulty, we conducted combined analysis of ALMA cold molecular gas kinematics and MUSE stellar kinematics of early type fast rotator galaxy NGC1380. In addition, we used HST image to trace the stellar luminosity distribution. With the help of high resolution of ALMA image and large field of view of MUSE, we derived the central BH mass, stellar bulge, disk and DM profile.


2009 ◽  
Vol 5 (H15) ◽  
pp. 69-69 ◽  
Author(s):  
Anne-Marie Weijmans

We developed a new method to obtain absorption line spectra of early-type galaxies at large radii, using integral-field spectrography (IFS). By using the spectrograph as a 'photon-collector' and adding the signal of many individual spaxels together in one spectrum, we obtain sufficient signal-to-noise to measure both stellar kinematics and line strengths at large radii. These can be used to determine the properties of the dark matter halo, as well as the stellar halo population.


2014 ◽  
Vol 10 (S309) ◽  
pp. 47-52
Author(s):  
Lisa M. Young

AbstractI present an overview of new observations of atomic and molecular gas in early-type galaxies, focusing on the Atlas3D project. Our data on stellar kinematics, age and metallicity, and ionized gas kinematics allow us to place the cold gas into the broader context of early-type galaxy assembly and star formation history. The cold gas data also provide valuable constraints for numerical simulations of early-type galaxies.


2010 ◽  
Vol 2010 (11) ◽  
pp. 002-002 ◽  
Author(s):  
Pau Amaro-Seoane ◽  
Juan Barranco ◽  
Argelia Bernal ◽  
Luciano Rezzolla

1996 ◽  
Vol 171 ◽  
pp. 167-170
Author(s):  
Ortwin Gerhard ◽  
Joseph Silk

The dark matter in the halos of galaxies may well be baryonic, and much of the mass within them could be in the form of clusters of substellar objects within which are embedded cold gas globules. Such halos might play an active role in galaxy formation and evolution.


1996 ◽  
Vol 171 ◽  
pp. 422-422
Author(s):  
C. Möllenhoff ◽  
M. Matthias ◽  
O.E. Gerhard

Surface photometry in I, J, K of the oval disk galaxy M 94 (NGC 4736) reveal a weak central stellar bar of 0.7 kpc semi-major axis length, comprising ≈ 14% of the total light within 20″. By stellar kinematics the existence of a small spheroidal bulge with v/à ≈ 0.8 was discovered. The ionized gas (Hα) in this region shows global and local deviations from the stellar kinematics. Model calculations of closed orbits for the cold gas in the combined potential of bar, disk, and bulge predict large non-circular motions in equilibrium flow. However, these do not fit the observed gas kinematics; obviously hydrodynamical forces play a role in the central region of M 94.


2005 ◽  
Vol 1 (C199) ◽  
pp. 205-212 ◽  
Author(s):  
H. J. Mo ◽  
Xiaohu Yang ◽  
Frank C. van den Bosch ◽  
Neal S. Katz

2018 ◽  
Vol 614 ◽  
pp. A94 ◽  
Author(s):  
Pedro K. Humire ◽  
Neil M. Nagar ◽  
Carolina Finlez ◽  
Verónica Firpo ◽  
Roy Slater ◽  
...  

We present two-dimensional stellar and gaseous kinematics of the inner 0.7 × 1.2 kpc2 of the Seyfert 1.5 galaxy ESO 362-G18, derived from optical (4092–7338 Å) spectra obtained with the GMOS integral field spectrograph on the Gemini South telescope at a spatial resolution of ≈170 pc and spectral resolution of 36 km s−1. ESO 362-G18 is a strongly perturbed galaxy of morphological type Sa or S0/a, with a minor merger approaching along the NE direction. Previous studies have shown that the [O III] emission shows a fan-shaped extension of ≈10′′ to the SE. We detect the [O III] doublet, [N II] and Hα emission lines throughout our field of view. The stellar kinematics is dominated by circular motions in the galaxy plane, with a kinematic position angle of ≈137° and is centred approximately on the continuum peak. The gas kinematics is also dominated by rotation, with kinematic position angles ranging from 122° to 139°, projected velocity amplitudes of the order of 100 km s−1, and a mean velocity dispersion of 100 km s−1. A double-Gaussian fit to the [O III]λ5007 and Hα lines, which have the highest signal to noise ratios of the emission lines, reveal two kinematic components: (1) a component at lower radial velocities which we interpret as gas rotating in the galactic disk; and (2) a component with line of sight velocities 100–250 km s−1 higher than the systemic velocity, interpreted as originating in the outflowing gas within the AGN ionization cone. We estimate a mass outflow rate of 7.4 × 10−2 M⊙ yr−1 in the SE ionization cone (this rate doubles if we assume a biconical configuration), and a mass accretion rate on the supermassive black hole (SMBH) of 2.2 × 10−2 M⊙ yr−1. The total ionized gas mass within ~84 pc of the nucleus is 3.3 × 105 M⊙; infall velocities of ~34 km s−1 in this gas would be required to feed both the outflow and SMBH accretion.


2020 ◽  
Vol 500 (3) ◽  
pp. 3151-3161
Author(s):  
Jacob Svensmark ◽  
Steen H Hansen ◽  
Davide Martizzi ◽  
Ben Moore ◽  
Romaine Tessier

ABSTRACT Dark matter (DM) dominates the properties of large cosmological structures such as galaxy clusters, and the mass profiles of the DM have been inferred for these equilibrated structures for years by using cluster X-ray surface brightnesses and temperatures. A new method has been proposed, which should allow us to infer a dynamical property of the DM, namely the velocity anisotropy. For the gas, a similar velocity anisotropy is zero due to frequent collisions; however, the collisionless nature of DM allows it to be non-trivial. Numerical simulations have for years found non-zero and radially varying DM velocity anisotropies. Here we employ the method proposed by Hansen & Piffaretti, and developed by Høst et al. to infer the DM velocity anisotropy in the bright galaxy cluster Perseus, to near five times the radii previously obtained. We find the DM velocity anisotropy to be consistent with the results of numerical simulations, however, still with large error bars. At half the virial radius, we find the DM velocity anisotropy to be non-zero at 1.7$\, \sigma$, lending support to the collisionless nature of DM.


Sign in / Sign up

Export Citation Format

Share Document