scholarly journals Mapping the dark matter halo of early-type galaxy NGC 2974 through orbit-based models with combined stellar and cold gas kinematics

2019 ◽  
Vol 491 (3) ◽  
pp. 4221-4231 ◽  
Author(s):  
Meng Yang ◽  
Ling Zhu ◽  
Anne-Marie Weijmans ◽  
Glenn van de Ven ◽  
Nicholas Boardman ◽  
...  

ABSTRACT We present an orbit-based method of combining stellar and cold gas kinematics to constrain the dark matter profile of early-type galaxies. We apply this method to early-type galaxy NGC 2974, using Pan-STARRS imaging and SAURON stellar kinematics to model the stellar orbits, and introducing H i kinematics from VLA observation as a tracer of the gravitational potential. The introduction of the cold gas kinematics shows a significant effect on the confidence limits of especially the dark halo properties: we exclude more than $95{{\ \rm per\ cent}}$ of models within the 1σ confidence level of Schwarzschild modelling with only stellar kinematics, and reduce the relative uncertainty of the dark matter fraction significantly to $10{{\ \rm per\ cent}}$ within 5Re. Adopting a generalized Navarro–Frenk–White (NFW) dark matter profile, we measure a shallow cuspy inner slope of $0.6^{+0.2}_{-0.3}$ when including the cold gas kinematics in our model. We cannot constrain the inner slope with the stellar kinematics alone.

2014 ◽  
Vol 10 (S309) ◽  
pp. 47-52
Author(s):  
Lisa M. Young

AbstractI present an overview of new observations of atomic and molecular gas in early-type galaxies, focusing on the Atlas3D project. Our data on stellar kinematics, age and metallicity, and ionized gas kinematics allow us to place the cold gas into the broader context of early-type galaxy assembly and star formation history. The cold gas data also provide valuable constraints for numerical simulations of early-type galaxies.


2019 ◽  
Vol 14 (S353) ◽  
pp. 253-254
Author(s):  
M. Yang ◽  
L. Zhu ◽  
A. Weijmans ◽  
G. van de Ven ◽  
N. F. Boardman ◽  
...  

AbstractWe present a new method to combine cold gas kinematics with the stellar kinematics modelled with the Schwarzschild orbit-superposition technique, and its application to the lenticular galaxy NGC 2974. The combination of stellar and cold gas kinematics significantly improves the constraints on the measured dark matter profile: assuming a generalised NFW halo profile, we find a cuspy inner halo slope for NGC 2974.


2008 ◽  
Vol 383 (4) ◽  
pp. 1343-1358 ◽  
Author(s):  
Anne-Marie Weijmans ◽  
Davor Krajnović ◽  
Glenn Van De Ven ◽  
Tom A. Oosterloo ◽  
Raffaella Morganti ◽  
...  

2019 ◽  
Vol 14 (S353) ◽  
pp. 248-252
Author(s):  
Takafumi Tsukui ◽  
Satoru Iguchi ◽  
Kyoko Onishi

AbstractIn order to understand the interaction between dark matter and baryonic matter in the galaxy evolution history, it is fundamental to constrain dark matter (DM) distribution in galaxies. However, it is difficult to constrain DM profile in the central region of early type galaxy because of the lack of extended neutral hydrogen gas and the degeneracy between dynamical stellar M/L and DM profile. To resolve this difficulty, we conducted combined analysis of ALMA cold molecular gas kinematics and MUSE stellar kinematics of early type fast rotator galaxy NGC1380. In addition, we used HST image to trace the stellar luminosity distribution. With the help of high resolution of ALMA image and large field of view of MUSE, we derived the central BH mass, stellar bulge, disk and DM profile.


2015 ◽  
Vol 24 (1) ◽  
Author(s):  
A. Moiseev ◽  
S. Khoperskov ◽  
A. Khoperskov ◽  
K. Smirnova ◽  
A. Smirnova ◽  
...  

AbstractThe polar ring galaxies (PRGs) represent an interesting type of peculiar systems in which the outer matter is rotating in the plane which is roughly perpendicular to the disk of the main galaxy. Despite the long-lasting study of the PRGs, the amount of observational data detailed enough is insufficient; there still remain many open questions. Among the most interesting issues, there are: estimating the flattening of dark matter halos in these systems and verifying the assumption that the most massive polar structures were formed by accretion of the matter from intergalactic filaments. The new catalog recently compiled by our team using SDSS images increased, by several times, the number of known PRGs. The current paper gives an overview of our latest results on the study of morphological and photometric structure of the PRGs. Using the stellar and ionized gas kinematics data based on spectroscopic observations with the Russian 6-m telescope, we estimate the shape of dark matter halo in individual galaxies.


2009 ◽  
Vol 5 (H15) ◽  
pp. 69-69 ◽  
Author(s):  
Anne-Marie Weijmans

We developed a new method to obtain absorption line spectra of early-type galaxies at large radii, using integral-field spectrography (IFS). By using the spectrograph as a 'photon-collector' and adding the signal of many individual spaxels together in one spectrum, we obtain sufficient signal-to-noise to measure both stellar kinematics and line strengths at large radii. These can be used to determine the properties of the dark matter halo, as well as the stellar halo population.


2021 ◽  
Vol 2021 (12) ◽  
pp. 048
Author(s):  
Muping Chen ◽  
Graciela B. Gelmini ◽  
Volodymyr Takhistov

Abstract Sub-GeV mass dark matter particles whose collisions with nuclei would not deposit sufficient energy to be detected, could instead be revealed through their interaction with electrons. Analyses of data from direct detection experiments usually require assuming a local dark matter halo velocity distribution. In the halo-independent analysis method, properties of this distribution are instead inferred from direct dark matter detection data, which allows then to compare different data without making any assumption on the uncertain local dark halo characteristics. This method has so far been developed for and applied to dark matter scattering off nuclei. Here we demonstrate how this analysis can be applied to scattering off electrons.


2019 ◽  
Vol 492 (2) ◽  
pp. 1869-1886 ◽  
Author(s):  
Christopher Duckworth ◽  
Rita Tojeiro ◽  
Katarina Kraljic

ABSTRACT We use a combination of data from the MaNGA survey and MaNGA-like observations in IllustrisTNG100 to determine the prevalence of misalignment between the rotational axes of stars and gas. This census paper outlines the typical characteristics of misaligned galaxies in both observations and simulations to determine their fundamental relationship with morphology and angular momentum. We present a sample of ∼4500 galaxies from MaNGA with kinematic classifications which we use to demonstrate that the prevalence of misalignment is strongly dependent on morphology. The misaligned fraction sharply increases going to earlier morphologies (28 ± 3 per cent of 301 early-type galaxies, 10 ± 1 per cent of 677 lenticulars, and 5.4 ± 0.6 per cent of 1634 pure late-type galaxies). For early-types, aligned galaxies are less massive than the misaligned sample whereas this trend reverses for lenticulars and pure late-types. We also find that decoupling depends on group membership for early-types with centrals more likely to be decoupled than satellites. We demonstrate that misaligned galaxies have similar stellar angular momentum to galaxies without gas rotation, much lower than aligned galaxies. Misaligned galaxies also have a lower gas mass than the aligned, indicative that gas loss is a crucial step in decoupling star–gas rotation. Through comparison to a mock MaNGA sample, we find that the strong trends with morphology and angular momentum hold true in IllustrisTNG100. We demonstrate that the lowered angular momentum is, however, not a transient property and that the likelihood of star–gas misalignment at $z$ = 0 is correlated with the spin of the dark matter halo going back to $z$ = 1.


2012 ◽  
Vol 752 (2) ◽  
pp. 163 ◽  
Author(s):  
A. Sonnenfeld ◽  
T. Treu ◽  
R. Gavazzi ◽  
P. J. Marshall ◽  
M. W. Auger ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document