scholarly journals The Central Bar in M 94

1996 ◽  
Vol 171 ◽  
pp. 422-422
Author(s):  
C. Möllenhoff ◽  
M. Matthias ◽  
O.E. Gerhard

Surface photometry in I, J, K of the oval disk galaxy M 94 (NGC 4736) reveal a weak central stellar bar of 0.7 kpc semi-major axis length, comprising ≈ 14% of the total light within 20″. By stellar kinematics the existence of a small spheroidal bulge with v/à ≈ 0.8 was discovered. The ionized gas (Hα) in this region shows global and local deviations from the stellar kinematics. Model calculations of closed orbits for the cold gas in the combined potential of bar, disk, and bulge predict large non-circular motions in equilibrium flow. However, these do not fit the observed gas kinematics; obviously hydrodynamical forces play a role in the central region of M 94.

2020 ◽  
Vol 635 ◽  
pp. A41
Author(s):  
Jan Florian ◽  
Bodo Ziegler ◽  
Michaela Hirschmann ◽  
Polychronis Papaderos ◽  
Ena Choi ◽  
...  

Context. Powerful active galactic nuclei (AGN) are supposed to play a key regulatory role on the evolution of their host galaxies by shaping the thermodynamic properties of their gas component. However, little is known as to the nature and the visibility timescale of the kinematical imprints of AGN-driven feedback. Gaining theoretical and observational insights into this subject is indispensable for a thorough understanding of the AGN-galaxy coevolution and could yield empirical diagnostics for the identification of galaxies that have experienced a major AGN episode in the past. Aims. We present an investigation of kinematical imprints of AGN feedback on the warm ionized gas medium (WIM) of massive early-type galaxies (ETGs). To this end, we take a two-fold approach that involves a comparative analysis of Hα velocity fields in 123 local ETGs from the CALIFA (Calar Alto Legacy Integral Field Area Survey) integral field spectroscopy survey with 20 simulated galaxies from high-resolution hydrodynamic cosmological SPHgal simulations. The latter were resimulated for two modeling setups, one with and another without AGN feedback. Methods. In order to quantify the effects of AGN feedback on gas kinematics, we measured three parameters that probe deviations from simple regular rotation by using the kinemetry package. These indicators trace the possible presence of distinct kinematic components in Fourier space (k3, 5/k1), variations in the radial profile of the kinematic major axis (σPA), and offsets between the stellar and gas velocity fields (Δϕ). These quantities were monitored in the simulations from a redshift 3 to 0.2 to assess the connection between black hole accretion history, stellar mass growth, and the kinematical perturbation of the WIM. Results. Observed local massive galaxies show a broad range of irregularities, indicating disturbed warm gas motions, which is irrespective of being classified via diagnostic lines as AGN or not. Simulations of massive galaxies with AGN feedback generally exhibit higher irregularity parameters than without AGN feedback, which is more consistent with observations. Besides AGN feedback, other processes like major merger events or infalling gas clouds can lead to elevated irregularity parameters, but they are typically of shorter duration. More specifically, k3, 5/k1 is most sensitive to AGN feedback, whereas Δϕ is most strongly affected by gas infall. Conclusions. We conclude that even if the general disturbance of the WIM velocity is not a unique indicator for AGN feedback, irregularity parameters that are high enough to be consistent with observations can only be reproduced in simulations with AGN feedback. Specifically, an elevated value for the deviation from simple ordered motion is a strong sign for previous events of AGN activity and feedback.


Processes ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1151
Author(s):  
Zhiquan Chen ◽  
Xin Tong ◽  
Zhanfu Li

Screening techniques have been widely deployed in industrial production for the size-separation of granular materials such as coal. The elliptical vibrating screen has been regarded as an excellent screening apparatus in terms of its high screening efficiency and large processing capacity. However, its fundamental mechanisms and operational principles remain poorly understood. In this paper, the sieving process of an elliptical vibrating screen was numerically simulated based on the discrete element method (DEM), and an approach coupling the DEM and the finite element method (DEM–FEM) was introduced to further explore the collision impact of materials on the screen deck. The screening time, screening efficiency, maximum stress and maximum deformation were examined for the evaluation of sieving performance. The effects of six parameters—length of the semi-major axis, length ratio between two semi-axes, vibration frequency, inclination angle, vibration direction angle and vibration direction—on different sieving results were systematically investigated in univariate and multivariate experiments. Additionally, the relationships among the four performance indexes were discussed and the relational functions were obtained. The conclusions and methodologies presented in this work could be of great significance for the design and improvement of elliptical vibrating screens.


2019 ◽  
Vol 631 ◽  
pp. A91 ◽  
Author(s):  
M. Girard ◽  
M. Dessauges-Zavadsky ◽  
F. Combes ◽  
J. Chisholm ◽  
V. Patrício ◽  
...  

We compare the molecular and ionized gas kinematics of two strongly lensed galaxies at z ∼ 1 that lie on the main sequence at this redshift. The observations were made with ALMA and MUSE, respectively. We derive the CO and [O II] rotation curves and dispersion profiles of these two galaxies. We find a difference between the observed molecular and ionized gas rotation curves for one of the two galaxies, the Cosmic Snake, for which we obtain a spatial resolution of a few hundred parsec along the major axis. The rotation curve of the molecular gas is steeper than the rotation curve of the ionized gas. In the second galaxy, A521, the molecular and ionized gas rotation curves are consistent, but the spatial resolution is only a few kiloparsec on the major axis. Using simulations, we investigate the effect of the thickness of the gas disk and effective radius on the observed rotation curves and find that a more extended and thicker disk smoothens the curve. We also find that the presence of a strongly inclined (> 70°) thick disk (> 1 kpc) can smoothen the rotation curve because it degrades the spatial resolution along the line of sight. By building a model using a stellar disk and two gas disks, we reproduce the rotation curves of the Cosmic Snake with a molecular gas disk that is more massive and more radially and vertically concentrated than the ionized gas disk. Finally, we also obtain an intrinsic velocity dispersion in the Cosmic Snake of 18.5 ± 7 km s−1 and 19.5 ± 6 km s−1 for the molecular and ionized gas, respectively, which is consistent with a molecular disk with a smaller and thinner disk. For A521, the intrinsic velocity dispersion values are 11 ± 8 km s−1 and 54 ± 11 km s−1, with a higher value for the ionized gas. This could indicate that the ionized gas disk is thicker and more turbulent in this galaxy. These results highlight the diversity of the kinematics of galaxies at z ∼ 1 and the different spatial distribution of the molecular and ionized gas disks. It suggests the presence of thick ionized gas disks at this epoch and that the formation of the molecular gas is limited to the midplane and center of the galaxy in some objects.


2019 ◽  
Vol 489 (3) ◽  
pp. 4111-4124 ◽  
Author(s):  
Pamela Soto-Pinto ◽  
Neil M Nagar ◽  
Carolina Finlez ◽  
Venkatessh Ramakrishnan ◽  
Dania Muñoz-Vergara ◽  
...  

ABSTRACT We present two-dimensional ionized gas and stellar kinematics in the inner 1.4 × 1.9 kpc2 of the Seyfert 2 galaxy ESO 153-G20 obtained with the Gemini-South/Gemini multi-object spectrograph integral field unit (GMOS-IFU) at a spatial resolution of ~250 pc and spectral resolution of 36 km s−1. Strong [O iii], Hα, [N ii] and [S ii] emission lines are detected over the entire field of view. The stellar kinematics trace circular rotation with a projected velocity amplitude of ±96 km s−1, a kinematic major axis in position angle of 11°, and an average velocity dispersion of 123 km s−1. To analyse the gas kinematics, we used aperture spectra, position–velocity diagrams and single/double Gaussian fits to the emission lines. All lines show two clear kinematic components: a rotating component that follows the stellar kinematics, and a larger-dispersion component, close to the systemic velocity (from which most of the [O iii] emission comes), mainly detected to the south-west. We interpret this second component as gas outflowing at ∼400 km s−1 in a compact (300 pc) ionization cone with a half-opening angle ≤40°. The counter-cone is probably obscured behind a dust lane. We estimate a mass outflow rate of 1.1 M$\odot$ yr−1, 200 times larger than the estimated accretion rate on to the supermassive black hole, and a kinetic to radiative power ratio of 1.7 × 10−3. Bar-induced perturbations probably explain the remaining disturbances observed in the velocity field of the rotating gas component.


2017 ◽  
Vol 9 (2) ◽  
pp. 233-249 ◽  
Author(s):  
Xin Yang ◽  
Haibo Huang ◽  
Xiyun Lu

AbstractThe motion and rotation of an ellipsoidal particle inside square tubes and rectangular tubes with the confinement ratio R/a∈(1.0,4.0) are studied by the lattice Boltzmann method (LBM), where R and a are the radius of the tube and the semi-major axis length of the ellipsoid, respectively. The Reynolds numbers (Re) up to 50 are considered. For the prolate ellipsoid inside square and rectangular tubes, three typical stable motion modes which depend on R/a are identified, namely, the kayaking mode, the tumbling mode, and the log-rolling mode are identified for the prolate spheroid. The diagonal plane strongly attracts the particle in square tubes with 1.2≤R/a<3.0. To explore the mechanism, some constrained cases are simulated. It is found that the tumbling mode in the diagonal plane is stable because the fluid force acting on the particle tends to diminish the small displacement and will bring it back to the plane. Inside rectangular tubes the particle will migrate to a middle plane between short walls instead of the diagonal plane. Through the comparisons between the initial unstable equilibrium motion state and terminal stable mode, it is seems that the particle tend to adopt the mode with smaller kinetic energy.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3684
Author(s):  
Leonardo Cament ◽  
Martin Adams ◽  
Pablo Barrios

This paper presents a Bayesian filter based solution to the Space Object (SO) tracking problem using simulated optical telescopic observations. The presented solution utilizes the Probabilistic Admissible Region (PAR) approach, which is an orbital admissible region that adheres to the assumption of independence between newborn targets and surviving SOs. These SOs obey physical energy constraints in terms of orbital semi-major axis length and eccentricity within a range of orbits of interest. In this article, Low Earth Orbit (LEO) SOs are considered. The solution also adopts the Partially Uniform Birth (PUB) intensity, which generates uniformly distributed births in the sensor field of view. The measurement update then generates a particle SO distribution. In this work, a Poisson Labeled Multi-Bernoulli (PLMB) multi-target tracking filter is proposed, using the PUB intensity model for the multi-target birth density, and a PAR for the spatial density to determine the initial orbits of SOs. Experiments are demonstrated using simulated SO trajectories created from real Two-Line Element data, with simulated measurements from twelve telescopes located in observatories, which form part of the Falcon telescope network. Optimal Sub-Pattern Assignment (OSPA) and CLEAR MOT metrics demonstrate encouraging multi-SO tracking results even under very low numbers of observations per SO pass.


2016 ◽  
Vol 30 (26) ◽  
pp. 1650192 ◽  
Author(s):  
Amaresh Chandra Mishra

Magnetic hysteresis behavior of isotropic permalloy elliptic nanorings of outer semi-major axis length [Formula: see text] 100 nm and thickness [Formula: see text] 20 nm were studied with respect to the variation of two parameters: outer semiminor axis length [Formula: see text] and the difference between outer and inner dimensions [Formula: see text]. The outer semiminor axis length [Formula: see text] varied from 90 nm to 20 nm which covers from nearly circular nanoring to elliptic nanoring of high aspect ratio. The value of [Formula: see text] varied in steps of 10 nm. Micromagnetic simulation of in-plane hysteresis curve of these nanorings revealed that the remanent state of all of these elliptic rings are onion states if the magnetic field is applied along the longer side of the elliptic rings. If the magnetic field is applied along the shorter side, then the remanent states turn out to be vortex state. The hysteresis loss indicated by area of the hysteresis loop was found to be decreasing gradually with the increment of either [Formula: see text] or [Formula: see text]. On the other hand, the remanent magnetization increased with increment of [Formula: see text] but decreased with the increment of [Formula: see text]. The changes were attributed to three parameters mainly: inner curvature, exchange energy and demagnetization energy. The changes in loop area were discussed in light of variation of these three parameters.


2020 ◽  
Vol 497 (1) ◽  
pp. 44-51
Author(s):  
Sudhanshu Barway ◽  
Y D Mayya ◽  
Aitor Robleto-Orús

ABSTRACT We report the discovery of a bar, a pseudo-bulge, and unresolved point source in the archetype collisional ring galaxy Cartwheel using careful morphological analysis of a near-infrared (NIR) Ks-band image of excellent quality (seeing = 0.42″) at the ESO archive. The bar is oval-shaped with a semi-major axis length of 3.23″ (∼2.09 kpc), with almost a flat light distribution along it. The bulge is almost round (ellipticity = 0.21) with an effective radius of 1.62″ (∼1.05 kpc) and a Sersic index of 0.99, parameters typical of pseudo-bulges in late-type galaxies. The newly discovered bar is not recognizable as such in the optical images even with more than a factor of 2 higher spatial resolution of the Hubble Space Telescope, due to a combination of its red colour and the presence of dusty features. The observed bar and pseudo-bulge most likely belonged to the pre-collisional progenitor of the Cartwheel. The discovery of a bar in an archetype collisional ring galaxy Cartwheel is the first observational evidence to confirm the prediction that bars can survive a drop-through collision along with the morphological structures like a central bulge (pseudo).


2014 ◽  
Vol 10 (S309) ◽  
pp. 47-52
Author(s):  
Lisa M. Young

AbstractI present an overview of new observations of atomic and molecular gas in early-type galaxies, focusing on the Atlas3D project. Our data on stellar kinematics, age and metallicity, and ionized gas kinematics allow us to place the cold gas into the broader context of early-type galaxy assembly and star formation history. The cold gas data also provide valuable constraints for numerical simulations of early-type galaxies.


1997 ◽  
Vol 161 ◽  
pp. 299-311 ◽  
Author(s):  
Jean Marie Mariotti ◽  
Alain Léger ◽  
Bertrand Mennesson ◽  
Marc Ollivier

AbstractIndirect methods of detection of exo-planets (by radial velocity, astrometry, occultations,...) have revealed recently the first cases of exo-planets, and will in the near future expand our knowledge of these systems. They will provide statistical informations on the dynamical parameters: semi-major axis, eccentricities, inclinations,... But the physical nature of these planets will remain mostly unknown. Only for the larger ones (exo-Jupiters), an estimate of the mass will be accessible. To characterize in more details Earth-like exo-planets, direct detection (i.e., direct observation of photons from the planet) is required. This is a much more challenging observational program. The exo-planets are extremely faint with respect to their star: the contrast ratio is about 10−10at visible wavelengths. Also the angular size of the apparent orbit is small, typically 0.1 second of arc. While the first point calls for observations in the infrared (where the contrast goes up to 10−7) and with a coronograph, the latter implies using an interferometer. Several space projects combining these techniques have been recently proposed. They aim at surveying a few hundreds of nearby single solar-like stars in search for Earth-like planets, and at performing a low resolution spectroscopic analysis of their infrared emission in order to reveal the presence in the atmosphere of the planet of CO H2O and O3. The latter is a good tracer of the presence of oxygen which could be, like on our Earth, released by biological activity. Although extremely ambitious, these projects could be realized using space technology either already available or in development for others missions. They could be built and launched during the first decades on the next century.


Sign in / Sign up

Export Citation Format

Share Document