scholarly journals Coevolution (or not) of supermassive black holes and host galaxies: Black hole scaling relations are not biased by selection effects

2019 ◽  
Vol 14 (S353) ◽  
pp. 186-198
Author(s):  
John Kormendy

AbstractThe oral version of this paper summarized Kormendy & Ho 2013, ARA&A, 51, 511. However, earlier speakers at this Symposium worried that selection effects bias the derivation of black hole scaling relations. I therefore added – and this proceedings paper emphasizes – a discussion of why we can be confident that selection effects do not bias the observed correlations between BH mass M• and the luminosity, stellar mass, and velocity dispersion of host ellipticals and classical bulges. These are the only galaxy components that show tight BH-host correlations. The scatter plots of M• with host properties for pseudobulges and disks are upper envelopes of scatter that does extend to lower BH masses. BH correlations are most consistent with a picture in which BHs coevolve only with classical bulges and ellipticals. Four physical regimes of coevolution (or not) are suggested by Kormendy & Ho 2013 and are summarized here.

Author(s):  
Abraham Loeb ◽  
Steven R. Furlanetto

This chapter analyzes formation mechanisms for supermassive black holes, their observable characteristics, and their interactions with their host galaxies and the wider Universe. A black hole is the end product of the complete gravitational collapse of a material object, such as a massive star. It is surrounded by a horizon from which even light cannot escape. Astrophysical black holes appear in two flavors: stellar-mass black holes that form when massive stars die, and the monstrous supermassive black holes that sit at the center of galaxies, reaching masses of up to ten billion Suns. The latter type is observed as active galactic nuclei (AGN), and the chapter introduces the quasar—a point-like (“quasi-stellar”) bright source at the center of a galaxy which serves as the most powerful type of AGN—in discussing the observable nature of supermassive black holes.


2019 ◽  
Vol 15 (S356) ◽  
pp. 376-376
Author(s):  
Ingyin Zaw

AbstractNuclear black holes in dwarf galaxies are important for understanding the low end of the supermassive black hole mass distribution and the black hole-host galaxy scaling relations. IC 750 is a rare system which hosts an AGN, found in ˜0.5% of dwarf galaxies, with circumnuclear 22 GHz water maser emission, found in ˜3–5% of Type 2 AGNs. Water masers, the only known tracer of warm, dense gas in the center parsec of AGNs resolvable in position and velocity, provide the most precise and accurate mass measurements of SMBHs outside the local group. We have mapped the maser emission in IC 750 and find that it traces a nearly edge-on warped disk, 0.2 pc in diameter. The central black hole has an upper limit mass of ˜1 × 105 M⊙ and a best fit mass of ˜8 × 104 M⊙, one to two orders of magnitude below what is expected from black hole-galaxy scaling relations. This has implications for models of black hole seed formation in the early universe, the growth of black holes, and their co-evolution with their host galaxies.


2019 ◽  
Vol 493 (1) ◽  
pp. 1500-1511 ◽  
Author(s):  
Francesco Shankar ◽  
David H Weinberg ◽  
Christopher Marsden ◽  
Philip J Grylls ◽  
Mariangela Bernardi ◽  
...  

ABSTRACT The masses of supermassive black holes at the centres of local galaxies appear to be tightly correlated with the mass and velocity dispersions of their galactic hosts. However, the local Mbh–Mstar relation inferred from dynamically measured inactive black holes is up to an order-of-magnitude higher than some estimates from active black holes, and recent work suggests that this discrepancy arises from selection bias on the sample of dynamical black hole mass measurements. In this work, we combine X-ray measurements of the mean black hole accretion luminosity as a function of stellar mass and redshift with empirical models of galaxy stellar mass growth, integrating over time to predict the evolving Mbh–Mstar relation. The implied relation is nearly independent of redshift, indicating that stellar and black hole masses grow, on average, at similar rates. Matching the de-biased local Mbh–Mstar relation requires a mean radiative efficiency ε ≳ 0.15, in line with theoretical expectations for accretion on to spinning black holes. However, matching the ‘raw’ observed relation for inactive black holes requires ε ∼ 0.02, far below theoretical expectations. This result provides independent evidence for selection bias in dynamically estimated black hole masses, a conclusion that is robust to uncertainties in bolometric corrections, obscured active black hole fractions, and kinetic accretion efficiency. For our fiducial assumptions, they favour moderate-to-rapid spins of typical supermassive black holes, to achieve ε ∼ 0.12–0.20. Our approach has similarities to the classic Soltan analysis, but by using galaxy-based data instead of integrated quantities we are able to focus on regimes where observational uncertainties are minimized.


2019 ◽  
Vol 488 (4) ◽  
pp. 5340-5351 ◽  
Author(s):  
H Baumgardt ◽  
C He ◽  
S M Sweet ◽  
M Drinkwater ◽  
A Sollima ◽  
...  

ABSTRACT We compare the results of a large grid of N-body simulations with the surface brightness and velocity dispersion profiles of the globular clusters ω Cen and NGC 6624. Our models include clusters with varying stellar-mass black hole retention fractions and varying masses of a central intermediate-mass black hole (IMBH). We find that an $\sim 45\, 000$ M⊙ IMBH, whose presence has been suggested based on the measured velocity dispersion profile of ω Cen, predicts the existence of about 20 fast-moving, m > 0.5 M⊙, main-sequence stars with a (1D) velocity v > 60 km s−1 in the central 20 arcsec of ω Cen. However, no such star is present in the HST/ACS proper motion catalogue of Bellini et al. (2017), strongly ruling out the presence of a massive IMBH in the core of ω Cen. Instead, we find that all available data can be fitted by a model that contains 4.6 per cent of the mass of ω Cen in a centrally concentrated cluster of stellar-mass black holes. We show that this mass fraction in stellar-mass BHs is compatible with the predictions of stellar evolution models of massive stars. We also compare our grid of N-body simulations with NGC 6624, a cluster recently claimed to harbour a 20 000 M⊙ black hole based on timing observations of millisecond pulsars. However, we find that models with MIMBH > 1000 M⊙ IMBHs are incompatible with the observed velocity dispersion and surface brightness profile of NGC 6624, ruling out the presence of a massive IMBH in this cluster. Models without an IMBH provide again an excellent fit to NGC 6624.


2011 ◽  
Vol 20 (12) ◽  
pp. 2305-2315 ◽  
Author(s):  
ANTONIO FEOLI ◽  
LUIGI MANCINI

We developed a theoretical model that is able to give a common origin to the correlations between the mass M• of supermassive black holes and the mass, velocity dispersion, kinetic energy and momentum parameter of the corresponding host galaxies. Our model is essentially based on the transformation of the angular momentum of the interstellar material, which falls into the black hole, into the angular momentum of the radiation emitted in this process. In this framework, we predict the existence of a relation of the form M• ∝ R e σ3, which is confirmed by the experimental data and can be the starting point to understand the other popular scaling laws too.


2002 ◽  
Vol 184 ◽  
pp. 335-342
Author(s):  
Richard F. Green

AbstractHigh angular resolution observations from WFPC and STIS now allow well-constrained dynamical measurement of the masses of supermassive black holes (SMBH) in nearby galaxies. An initial statistical analysis by Magorrian et al. showed that 97% of bulges host SMBH. Black hole mass is correlated moderately with bulge luminosity and strongly with the velocity dispersion of the whole bulge, suggesting that black hole formation may be an intrinsic aspect of bulge formation. Black hole masses for AGN determined from reverberation mapping fall on the same relationship with bulge velocity dispersion as those determined from stellar dynamical measurements. The prospect is therefore that the large-scale distribution of black hole masses in distant quasars may be determined through relatively straightforward measurement. Integral constraints show consistency between the total AGN luminosity density and the total volume density in SMBH contained in galaxy bulges. The strong peak of the high-luminosity quasar luminosity function at early cosmic time is consistent with the association of the build-up of SMBH through accretion and bulge formation. Alternate scenarios requiring substantial build-up of the most massive black holes at later cosmic times are more difficult to reconcile with the evolution of the LF.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Peter Erwin ◽  
Dimitri Alexei Gadotti

Studies have suggested that there is a strong correlation between the masses of nuclear star clusters (NSCs) and their host galaxies, a correlation which is said to be an extension of the well-known correlations between supermassive black holes (SMBHs) and their host galaxies. But careful analysis of disk galaxies—including 2D bulge/disk/bar decompositions—shows that while SMBHs correlate with the stellar mass of thebulgecomponent of galaxies, the masses of NSCs correlate much better with thetotalgalaxy stellar mass. In addition, the mass ratioMNSC/M⋆, totfor NSCs in spirals (at least those with Hubble types Sc and later) is typically an order of magnitude smaller than the mass ratioMBH/M⋆, bulof SMBHs. The absence of a universal “central massive object” correlation argues against common formation and growth mechanisms for both SMBHs and NSCs. We also discuss evidence for a break in the NSC-host galaxy correlation, galaxies with Hubble types earlier than Sbc appear to host systematically more massive NSCs than do types Sc and later.


2010 ◽  
Vol 6 (S277) ◽  
pp. 21-25
Author(s):  
Christopher D. Impey ◽  
Jonathan R. Trump ◽  
Jared M. Gabor ◽  

AbstractThe Cosmological Evolution Survey (COSMOS) is a unique tool for studying low level AGN activity and the co-evolution of galaxies and supermassive black holes. COSMOS involves the largest contiguous region of the sky ever imaged by HST; it includes very complete multiwavelength coverage, and the largest joint samples of galaxy and AGN redshifts in any deep survey. The result is a search for AGN with low black hole mass, low accretion rates, and levels of obscuration that can remove them from optical surveys. A complete census of intermediate mass black holes at redshifts of 1 to 3 is required to tell the story of the co-evolution of galaxies and their embedded, and episodically active, black holes.


2003 ◽  
Vol 208 ◽  
pp. 455-456
Author(s):  
Jeremy Tinker ◽  
Barbara Ryden

We present results of numerical simulations of mergers of spiral galaxies using GADGET (Springel, Yoshida, & White 2001). In three of these simulations one of the progenitor galaxies contained a central supermassive black hole (BH), as well as one simulation which did not contain a BH. The merger remnants were evolved to an age of ∼ 13 Gyr to examine the evolution of the shape of each merger remnant. The results of these simulations were compared to observations of elliptical galaxies, which show that older galaxies appear rounder than younger ones (Ryden, Forbes, & Terlevich 2001).We found that the simulations in which the BH mass was fixed throughout the evolution influence the shape of their host galaxies on timescales less than 3 Gyr. These simulations show little trend of shape with age beyond this time. In the simulations in which the BH mass increased linearly over the duration of the simulation, there is a significant evolution of the shape of the remnant throughout its lifetime, comparable to the observational trend.


Sign in / Sign up

Export Citation Format

Share Document